Main Content



Since R2019a


A Profile object represents a profile for a System Composer™ model.


Create a profile using the systemcomposer.profile.Profile.createProfile function.

profile = systemcomposer.profile.Profile.createProfile("profileName");


Before you move, copy, or rename a profile to a different directory, you must close the profile in the Profile Editor or by using the close function. If you rename a profile, follow the example for the renameProfile function.


expand all

Name of profile, specified as a character vector or string. This property must be a valid MATLAB® identifier.

Data Types: char | string

Descriptive name of profile, specified as a character vector or string. This property can contain spaces and special characters, but no new lines.

Data Types: char | string

Description text for profile, specified as a multi-line character vector or string.

Data Types: char | string

Stereotypes defined in profile, specified as an array of systemcomposer.profile.Stereotype objects.

Data Types: char

Object Functions

createProfileCreate profile
addStereotypeAdd stereotype to profile
removeStereotypeRemove stereotype from profile
getStereotypeFind stereotype in profile by name
getDefaultStereotypeGet default stereotype for profile
setDefaultStereotypeSet default stereotype for profile
findFind profile by name
openOpen profile
loadLoad profile from file
saveSave profile as file
closeClose profile
closeAllClose all open profiles
destroyRemove model element


collapse all

Build an architecture model programmatically using System Composer™.

To build a model, add a data dictionary with data interfaces, data elements, a value type, and a physical interface, then add components, ports, and connections. Create a profile with stereotypes and properties and then apply those stereotypes to model elements. Assign an owned interface to a port. After the model is built, you can create custom views to focus on specific considerations. You can also query the model to collect different model elements according to criteria you specify.

Add Components, Ports, Connections, and Interfaces

Create a model and extract its architecture.

model = systemcomposer.createModel("mobileRobotAPI");
arch = model.Architecture;

Create an interface data dictionary and add a data interface. Add a data element to the data interface. Add a value type to the interface data dictionary. Assign the type of the data element to the value type. Add a physical interface and physical element with a physical domain type. Link the data dictionary to the model.

dictionary = systemcomposer.createDictionary("SensorInterfaces.sldd");
interface = dictionary.addInterface("GPSInterface");
element = interface.addElement("SignalStrength");
valueType = dictionary.addValueType("SignalStrengthType",Units="dB",...
    Description="GPS Signal Strength");
physicalInterface = dictionary.addPhysicalInterface("PhysicalInterface");
physicalElement = addElement(physicalInterface,"ElectricalElement",...

Save the changes to the interface data dictionary.

Save the model.

Open the model.


View the interfaces in the Interface Editor.


Add components, ports, and connections. Set the physical interface to the physical ports, which you will connect later.

componentSensor = addComponent(arch,"Sensor");
sensorPorts = addPort(componentSensor.Architecture,{'MotionData','SensorPower'},...

componentPlanning = addComponent(arch,"Planning");
planningPorts = addPort(componentPlanning.Architecture,...

componentMotion = addComponent(arch,"Motion");
motionPorts = addPort(componentMotion.Architecture,{'MotionCommand','MotionData'},...

Create an owned interface on the 'MotionData' port. Add an owned data element under the owned data interface. Assign the data element "Rotation" to a value type with units set to degrees.

ownedInterface = motionPorts(2).createInterface("DataInterface");
ownedElement = ownedInterface.addElement("Rotation");
subInterface = ownedElement.createOwnedType(Units="degrees");

View the interfaces in the Interface Editor. Select the 'MotionData' port on the Motion component. In the Interface Editor, switch from Dictionary View to Port Interface View.


Connect components with an interface rule and the default name rule. The interface rule connects ports on components that share the same interface. By default, the name rule connects ports on components that share the same name.

c_sensorData = connect(arch,componentSensor,componentPlanning,Rule="interface");
c_motionData = connect(arch,componentMotion,componentSensor);
c_motionCommand = connect(arch,componentPlanning,componentMotion);

Add and Connect Architecture Port

Add an architecture port on the architecture.

archPort = addPort(arch,"Command","in");

The connect command requires a component port as an argument. Obtain the component port, then connect.

compPort = getPort(componentPlanning,"Command");
c_Command = connect(archPort,compPort);

Save the model.

Arrange the layout by pressıng Ctrl+Shift+A or using this command.



Create and Apply Profile with Stereotypes

Profiles are XML files that can be applied to any model. You can add stereotypes with properties to profiles and then populate the properties with specific values in the Profile Editor. Along with the built-in analysis capabilities of System Composer, stereotypes help you optimize your system for performance, cost, and reliability.

Create Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile("GeneralProfile");

Create a stereotype that applies to all element types.

elemSType = addStereotype(profile,"projectElement");

Create stereotypes for different types of components. You can select these types are based on your design needs.

pCompSType = addStereotype(profile,"physicalComponent",AppliesTo="Component");
sCompSType = addStereotype(profile,"softwareComponent",AppliesTo="Component");

Create a stereotype for connections.

sConnSType = addStereotype(profile,"standardConn",AppliesTo="Connector");

Add Properties

Add properties to the stereotypes. You can use properties to capture metadata for model elements and analyze nonfunctional requirements. These properties are added to all elements to which the stereotype is applied, in any model that imports the profile.


Save Profile;

Apply Profile to Model

Apply the profile to the model.


Apply stereotypes to components. Some components are physical components, while others are software components.


Apply the connector stereotype to all connections.


Apply the general element stereotype to all connectors and ports.


Set properties for each component.

    'Central unit for all sensors');
    'Planning computer');
    'Motor and motor controller');

Set the properties of connections to be identical.

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)

Add Hierarchy

Add two components named Controller and Scope inside the Motion component. Define the ports. Connect the components to the architecture and to each other, applying a connector stereotype. Hierarchy in an architecture diagram creates an additional level of detail that specifies how components behave internally.

motionArch = componentMotion.Architecture;

motionController = motionArch.addComponent('Controller');
controllerPorts = addPort(motionController.Architecture,{'controlIn','controlOut'},...
controllerCompPortIn = motionController.getPort('controlIn');
controllerCompPortOut = motionController.getPort('controlOut');

motionScope = motionArch.addComponent('Scope');
scopePorts = addPort(motionScope.Architecture,{'scopeIn','scopeOut'},{'in','out'});
scopeCompPortIn = motionScope.getPort('scopeIn');
scopeCompPortOut = motionScope.getPort('scopeOut');

c_planningController = connect(motionPorts(1),controllerCompPortIn);

For outport connections, the data element must be specified.

c_planningScope = connect(scopeCompPortOut,motionPorts(2),DestinationElement="Rotation");
c_planningConnect = connect(controllerCompPortOut,scopeCompPortIn,...

Save the model.

Arrange the layout by pressıng Ctrl+Shift+A or using this command.



Create Model Reference

Model references can help you organize large models hierarchically and define architectures or behaviors once that you can then reuse. When a component references another model, any existing ports on the component are removed, and ports that exist on the referenced model will appear on the component.

Create a new System Composer model. Convert the Controller component into a reference component to reference the new model. To add additional ports on the Controller component, you must update the referenced model "mobileMotion".

referenceModel = systemcomposer.createModel("mobileMotion");
referenceArch = referenceModel.Architecture;
newComponents = addComponent(referenceArch,"Gyroscope");


Save the models.

Make Variant Component

You can convert the Planning component to a variant component using the makeVariant function. The original component is embedded within a variant component as one of the available variant choices. You can design other variant choices within the variant component and toggle the active choice. Variant components allow you to choose behavioral designs programmatically in an architecture model to perform trade studies and analysis.

[variantComp,choice1] = makeVariant(componentMotion);

Add an additional variant choice named MotionAlt. The second argument defines the name, and the third argument defines the label. The label identifies the choice. The active choice is controlled by the label.

choice2 = addChoice(variantComp,{'MotionAlt'},{'MotionAlt'});

Create the necessary ports on MotionAlt.

motionAltPorts = addPort(choice2.Architecture,{'MotionCommand','MotionData'},{'in','out'});

Make MotionAlt the active variant.


Arrange the layout by pressıng Ctrl+Shift+A or using this command.


Save the model.

Clean Up

Run this script to remove generated artifacts before you run this example again.


More About

expand all

Version History

Introduced in R2019a