Cody

Problem 44830. Twists in 2D

Created by Peter Corke in Community

So far we have represented the pose of an object in the plane using a homogeneous transformation, a 3x3 matrix belonging to the special Euclidean group SE(2), which is also a Lie group.

An alternative, and compact, representation of pose is as a twist, a 3-vector comprising the unique elements of the corresponding 3x3 matrix in the Lie algebra se(2). The matrix exponential of the Lie algebra matrix is a Lie group matrix.

Given a homogeneous transformation, return the corresponding twist as a column vector with the translational elements first.

Solution Stats

33.33% Correct | 66.67% Incorrect
Last solution submitted on Feb 06, 2019

Recent Solvers2

Suggested Problems

More from this Author11

Discover MakerZone

MATLAB and Simulink resources for Arduino, LEGO, and Raspberry Pi

Learn more

Discover what MATLAB® can do for your career.

Opportunities for recent engineering grads.

Apply Today

MATLAB Academy

New to MATLAB?

Learn MATLAB today!