Main Content

Beta Distribution

Fit, evaluate, and generate random samples from beta distribution

Statistics and Machine Learning Toolbox™ offers multiple ways to work with the beta distribution.

  • Create a BetaDistribution object and use BetaDistribution object functions.

  • Use distribution-specific functions with specified distribution parameters. The functions can accept parameters of multiple beta distributions.

  • Use the generic distribution functions with the specified distribution name "Beta" and corresponding parameters.

To learn about the beta distribution, see Beta Distribution.


expand all

makedistCreate probability distribution object
fitdistFit probability distribution object to data
distributionFitterOpen Distribution Fitter app
cdfCumulative distribution function
gatherGather properties of Statistics and Machine Learning Toolbox object from GPU (Since R2020b)
icdfInverse cumulative distribution function
iqrInterquartile range of probability distribution
meanMean of probability distribution
medianMedian of probability distribution
negloglikNegative loglikelihood of probability distribution
paramciConfidence intervals for probability distribution parameters
pdfProbability density function
plotPlot probability distribution object (Since R2022b)
proflikProfile likelihood function for probability distribution
randomRandom numbers
stdStandard deviation of probability distribution
truncateTruncate probability distribution object
varVariance of probability distribution
betacdfBeta cumulative distribution function
betapdfBeta probability density function
betainvBeta inverse cumulative distribution function
betalikeBeta negative log-likelihood
betastatBeta mean and variance
betafitBeta parameter estimates
betarndBeta random numbers
cdfCumulative distribution function
icdfInverse cumulative distribution function
mleMaximum likelihood estimates
pdfProbability density function
randomRandom numbers


BetaDistributionBeta probability distribution object


  • Beta Distribution

    The beta distribution describes a family of curves that are nonzero only on the interval [0,1].