Main Content

designfilt

Design digital filters

designfilt no longer assists in correcting calls to the function within a script or function. For more information, see Version History.

Description

d = designfilt(resp,Name,Value) designs a digitalFilter object, d, with response type resp. Examples of resp are 'lowpassfir' and 'bandstopiir'. Specify the filter further using a set of Name-Value Arguments. The allowed specification sets depend on resp and consist of combinations of these:

  • Frequency Constraints correspond to the frequencies at which a filter exhibits a desired behavior. Examples include 'PassbandFrequency' and 'CutoffFrequency'. You must always specify the frequency constraints.

  • Magnitude Constraints describe the filter behavior at particular frequency ranges. Examples include 'PassbandRipple' and 'StopbandAttenuation'. designfilt provides default values for magnitude constraints left unspecified. In arbitrary-magnitude designs you must always specify the vectors of desired amplitudes.

  • Filter Order: Some design methods let you specify the order. Others produce minimum-order designs. That is, they generate the smallest filters that satisfy the specified constraints.

  • Design Method is the algorithm used to design the filter. Examples include constrained least squares ('cls') and Kaiser windowing ('kaiserwin'). For some specification sets, there are multiple design methods available to choose from. In other cases, you can use only one method to meet the desired specifications.

  • Design Method Options are parameters specific to a given design method. Examples include 'Window' for the 'window' method and optimization 'Weights' for arbitrary-magnitude equiripple designs. designfilt provides default values for design options left unspecified.

  • Sample Rate is the frequency at which the filter operates. designfilt has a default sample rate of 2 Hz. Using this value is equivalent to working with normalized frequencies.

Note

If you specify an incomplete or inconsistent set of name-value arguments at the command line, designfilt offers to open a Filter Design Assistant. The assistant helps you design the filter and pastes the corrected MATLAB® code to the command line.

If you call designfilt from a script or function with an incorrect set of specifications, designfilt issues an error message with a link to open a Filter Design Assistant. The assistant helps you design the filter and pastes the corrected MATLAB code on the command line. The designed filter is saved to the workspace.

  • Use the filter function in the form of dataOut = filter(d,dataIn) to filter an input signal dataIn with a digitalFilter d. For IIR filters, the filter function uses a direct-form II implementation. You can also use the filtfilt and fftfilt functions with digitalFilter objects.

  • Use Filter Analyzer to visualize the filter d.

  • Type d.Numerator and d.Denominator to obtain the numerator and denominator coefficients of a digitalFilter d. For IIR filters, the coefficients are expressed as second-order cascaded transfer functions.

  • See digitalFilter for a list of the filtering and analysis functions you can use with the digitalFilter object.

example

designfilt(d) lets you edit an existing digital filter d. It opens a Filter Design Assistant populated with the filter specifications, which you can then modify. This is the only way you can edit a digitalFilter object. Its properties are otherwise read-only.

Examples

collapse all

Design a 20th-order bandpass FIR filter with lower cutoff frequency 400 Hz and higher cutoff frequency 450 Hz. The sample rate is 1500 Hz.

bpfilt = designfilt("bandpassfir", ...
    FilterOrder=20,CutoffFrequency1=400, ...
    CutoffFrequency2=450,SampleRate=1500);

Visualize the magnitude response of the filter.

freqz(bpfilt.Numerator,1,[],1500)

Figure contains 2 axes objects. Axes object 1 with title Phase, xlabel Frequency (Hz), ylabel Phase (degrees) contains an object of type line. Axes object 2 with title Magnitude, xlabel Frequency (Hz), ylabel Magnitude (dB) contains an object of type line.

Use it to filter a random signal containing 1000 samples.

dataIn = randn(1000,1);
dataOut = filter(bpfilt,dataIn);

Design a 20th-order bandpass IIR filter with lower 3-dB frequency 400 Hz and higher 3-dB frequency 450 Hz. The sample rate is 1500 Hz.

bpfilt = designfilt("bandpassiir", ...
    FilterOrder=20,HalfPowerFrequency1=400, ...
    HalfPowerFrequency2=450,SampleRate=1500);

Visualize the frequency response of the filter.

freqz(bpfilt,[],1500)

Figure contains 2 axes objects. Axes object 1 with title Phase, xlabel Frequency (Hz), ylabel Phase (degrees) contains an object of type line. Axes object 2 with title Magnitude, xlabel Frequency (Hz), ylabel Magnitude (dB) contains an object of type line.

Use it to filter a 1000-sample random signal.

dataIn = randn(1000,1);
dataOut = filter(bpfilt,dataIn);

Input Arguments

collapse all

Filter response and type, specified as a character vector or string scalar.

Select this option to design a finite impulse response (FIR) lowpass filter. This example uses the fifth specification set from the table.

d = designfilt('lowpassfir', ...        % Response type
       'FilterOrder',25, ...            % Filter order
       'PassbandFrequency',400, ...     % Frequency constraints
       'StopbandFrequency',550, ...
       'DesignMethod','ls', ...         % Design method
       'PassbandWeight',1, ...          % Design method options
       'StopbandWeight',2, ...
       'SampleRate',2000)               % Sample rate

  • If you omit 'FilterOrder' (when required), or any of the frequency constraints, designfilt generates an error.

  • If you omit the magnitude constraints, designfilt uses default values.

  • If you omit 'DesignMethod', designfilt uses the default design method for the specification set.

  • If you omit the design method options, designfilt uses the default values for the design method that you have selected.

  • If you omit 'SampleRate', designfilt sets it to 2 Hz.

Select this option to design an infinite impulse response (IIR) lowpass filter. This example uses the first specification set from the table.

d = designfilt('lowpassiir', ...        % Response type
       'PassbandFrequency',400, ...     % Frequency constraints
       'StopbandFrequency',550, ...
       'PassbandRipple',4, ...          % Magnitude constraints
       'StopbandAttenuation',55, ...
       'DesignMethod','ellip', ...      % Design method
       'MatchExactly','passband', ...   % Design method options
       'SampleRate',2000)               % Sample rate

  • If you omit 'FilterOrder' (when required), or any of the frequency constraints, designfilt generates an error.

  • If you omit the magnitude constraints, designfilt uses default values.

  • If you omit 'DesignMethod', designfilt uses the default design method for the specification set.

  • If you omit the design method options, designfilt uses the default values for the design method that you have selected.

  • If you omit 'SampleRate', designfilt sets it to 2 Hz.

Filter Order Argument NamesFrequency Constraint Argument NamesMagnitude Constraint Argument Names'DesignMethod' Argument ValuesDesign Option Argument Names

N/A (Minimum-order design)

'PassbandFrequency'

'StopbandFrequency'

'PassbandRipple'

'StopbandAttenuation'

'butter' (default)

'MatchExactly'

'cheby1'

'MatchExactly'

'cheby2'

'MatchExactly'

'ellip'

'MatchExactly'

'FilterOrder'

'HalfPowerFrequency'

N/A

'butter'

N/A

'FilterOrder'

'PassbandFrequency'

'PassbandRipple'

'cheby1'

N/A

'FilterOrder'

'PassbandFrequency'

'PassbandRipple'

'StopbandAttenuation'

'ellip'

N/A

'FilterOrder'

'StopbandFrequency'

'StopbandAttenuation'

'cheby2'

N/A

'NumeratorOrder'

'DenominatorOrder'

'HalfPowerFrequency'

N/A

'butter'

N/A

Select this option to design a finite impulse response (FIR) highpass filter. This example uses the first specification set from the table.

d = designfilt('highpassfir', ...       % Response type
       'StopbandFrequency',400, ...     % Frequency constraints
       'PassbandFrequency',550, ...
       'StopbandAttenuation',55, ...    % Magnitude constraints
       'PassbandRipple',4, ...
       'DesignMethod','kaiserwin', ...  % Design method
       'ScalePassband',false, ...       % Design method options
       'SampleRate',2000)               % Sample rate

  • If you omit 'FilterOrder' (when required), or any of the frequency constraints, designfilt generates an error.

  • If you omit the magnitude constraints, designfilt uses default values.

  • If you omit 'DesignMethod', designfilt uses the default design method for the specification set.

  • If you omit the design method options, designfilt uses the default values for the design method that you have selected.

  • If you omit 'SampleRate', designfilt sets it to 2 Hz.

Select this option to design an infinite impulse response (IIR) highpass filter. This example uses the first specification set from the table.

d = designfilt('highpassiir', ...       % Response type
       'StopbandFrequency',400, ...     % Frequency constraints
       'PassbandFrequency',550, ...
       'StopbandAttenuation',55, ...    % Magnitude constraints
       'PassbandRipple',4, ...
       'DesignMethod','cheby1', ...     % Design method
       'MatchExactly','stopband', ...   % Design method options
       'SampleRate',2000)               % Sample rate

  • If you omit 'FilterOrder' (when required), or any of the frequency constraints, designfilt generates an error.

  • If you omit the magnitude constraints, designfilt uses default values.

  • If you omit 'DesignMethod', designfilt uses the default design method for the specification set.

  • If you omit the design method options, designfilt uses the default values for the design method that you have selected.

  • If you omit 'SampleRate', designfilt sets it to 2 Hz.

Filter Order Argument NamesFrequency Constraint Argument NamesMagnitude Constraint Argument Names'DesignMethod' Argument ValuesDesign Option Argument Names

N/A (Minimum-order design)

'StopbandFrequency'

'PassbandFrequency'

'StopbandAttenuation'

'PassbandRipple'

'butter' (default)

'MatchExactly'

'cheby1'

'MatchExactly'

'cheby2'

'MatchExactly'

'ellip'

'MatchExactly'

'FilterOrder'

'HalfPowerFrequency'

N/A

'butter'

N/A

'FilterOrder'

'PassbandFrequency'

'PassbandRipple'

'cheby1'

N/A

'FilterOrder'

'PassbandFrequency'

'StopbandAttenuation'

'PassbandRipple'

'ellip'

N/A

'FilterOrder'

'StopbandFrequency'

'StopbandAttenuation'

'cheby2'

N/A

'NumeratorOrder'

'DenominatorOrder'

'HalfPowerFrequency'

N/A

'butter'

N/A

Select this option to design a finite impulse response (FIR) bandpass filter. This example uses the fourth specification set from the table.

d = designfilt('bandpassfir', ...       % Response type
       'FilterOrder',86, ...            % Filter order
       'StopbandFrequency1',400, ...    % Frequency constraints
       'PassbandFrequency1',450, ...
       'PassbandFrequency2',600, ...
       'StopbandFrequency2',650, ...
       'DesignMethod','ls', ...         % Design method
       'StopbandWeight1',1, ...         % Design method options
       'PassbandWeight', 2, ...
       'StopbandWeight2',3, ...
       'SampleRate',2000)               % Sample rate

  • If you omit 'FilterOrder' (when required), or any of the frequency constraints, designfilt generates an error.

  • If you omit the magnitude constraints, designfilt uses default values.

  • If you omit 'DesignMethod', designfilt uses the default design method for the specification set.

  • If you omit the design method options, designfilt uses the default values for the design method that you have selected.

  • If you omit 'SampleRate', designfilt sets it to 2 Hz.

Select this option to design an infinite impulse response (IIR) bandpass filter. This example uses the first specification set from the table.

d = designfilt('bandpassiir', ...       % Response type
       'StopbandFrequency1',400, ...    % Frequency constraints
       'PassbandFrequency1',450, ...
       'PassbandFrequency2',600, ...
       'StopbandFrequency2',650, ...
       'StopbandAttenuation1',40, ...   % Magnitude constraints
       'PassbandRipple',1, ...
       'StopbandAttenuation2',50, ...
       'DesignMethod','ellip', ...      % Design method
       'MatchExactly','passband', ...   % Design method options
       'SampleRate',2000)               % Sample rate

  • If you omit 'FilterOrder' (when required), or any of the frequency constraints, designfilt generates an error.

  • If you omit the magnitude constraints, designfilt uses default values.

  • If you omit 'DesignMethod', designfilt uses the default design method for the specification set.

  • If you omit the design method options, designfilt uses the default values for the design method that you have selected.

  • If you omit 'SampleRate', designfilt sets it to 2 Hz.

Select this option to design a finite impulse response (FIR) bandstop filter. This example uses the fourth specification set from the table.

d = designfilt('bandstopfir', ...       % Response type
       'FilterOrder',32, ...            % Filter order
       'PassbandFrequency1',400, ...    % Frequency constraints
       'StopbandFrequency1',500, ...
       'StopbandFrequency2',700, ...
       'PassbandFrequency2',850, ...
       'DesignMethod','ls', ...         % Design method
       'PassbandWeight1',1, ...         % Design method options
       'StopbandWeight', 3, ...
       'PassbandWeight2',5, ...
       'SampleRate',2000)               % Sample rate

  • If you omit 'FilterOrder' (when required), or any of the frequency constraints, designfilt generates an error.

  • If you omit the magnitude constraints, designfilt uses default values.

  • If you omit 'DesignMethod', designfilt uses the default design method for the specification set.

  • If you omit the design method options, designfilt uses the default values for the design method that you have selected.

  • If you omit 'SampleRate', designfilt sets it to 2 Hz.

Select this option to design an infinite impulse response (IIR) bandstop filter. This example uses the first specification set from the table.

d = designfilt('bandstopiir', ...       % Response type
       'PassbandFrequency1',400, ...    % Frequency constraints
       'StopbandFrequency1',500, ...
       'StopbandFrequency2',700, ...
       'PassbandFrequency2',850, ...
       'PassbandRipple1',1, ...         % Magnitude constraints
       'StopbandAttenuation',55, ...
       'PassbandRipple2',1, ...
       'DesignMethod','ellip', ...      % Design method
       'MatchExactly','both', ...       % Design method options
       'SampleRate',2000)               % Sample rate

  • If you omit 'FilterOrder' (when required), or any of the frequency constraints, designfilt generates an error.

  • If you omit the magnitude constraints, designfilt uses default values.

  • If you omit 'DesignMethod', designfilt uses the default design method for the specification set.

  • If you omit the design method options, designfilt uses the default values for the design method that you have selected.

  • If you omit 'SampleRate', designfilt sets it to 2 Hz.

Select this option to design a finite impulse response (FIR) differentiator filter. This example uses the second specification set from the table.

d = designfilt('differentiatorfir', ... % Response type
       'FilterOrder',42, ...            % Filter order
       'PassbandFrequency',400, ...     % Frequency constraints
       'StopbandFrequency',500, ...
       'DesignMethod','equiripple', ... % Design method
       'PassbandWeight',1, ...          % Design method options
       'StopbandWeight',4, ...
       'SampleRate',2000)               % Sample rate

  • If you omit 'FilterOrder', or any of the frequency constraints when designing a partial-band differentiator, designfilt generates an error.

  • If you omit 'DesignMethod', designfilt uses the default design method for the specification set.

  • If you omit the design method options, designfilt uses the default values for the design method that you have selected.

  • If you omit 'SampleRate', designfilt sets it to 2 Hz.

Filter Order Argument NamesFrequency Constraint Argument NamesMagnitude Constraint Argument Names'DesignMethod' Argument ValuesDesign Option Argument Names

'FilterOrder'

N/A

N/A

'equiripple' (default)

N/A

'ls'

N/A

'FilterOrder'

'PassbandFrequency'

'StopbandFrequency'

N/A

'equiripple' (default)

'PassbandWeight'

'StopbandWeight'

'ls'

N/A

Select this option to design a finite impulse response (FIR) Hilbert transformer filter. This example uses the specification set from the table.

d = designfilt('hilbertfir', ...        % Response type
       'FilterOrder',12, ...            % Filter order
       'TransitionWidth',400, ...       % Frequency constraints
       'DesignMethod','ls', ...         % Design method
       'SampleRate',2000)               % Sample rate

  • If you omit 'FilterOrder' or 'TransitionWidth', designfilt generates an error.

  • If you omit 'DesignMethod', designfilt uses the default design method for Hilbert transformers.

  • If you omit 'SampleRate', designfilt sets it to 2 Hz.

Filter Order Argument NamesFrequency Constraint Argument NamesMagnitude Constraint Argument Names'DesignMethod' Argument ValuesDesign Option Argument Names

'FilterOrder'

'TransitionWidth'

N/A

'equiripple' (default)

N/A

'ls'

N/A

Select this option to design a finite impulse response (FIR) filter of arbitrary magnitude response. This example uses the second specification set from the table.

d = designfilt('arbmagfir', ...         % Response type
       'FilterOrder',88, ...            % Filter order
       'NumBands',4, ...                % Frequency constraints
       'BandFrequencies1',[0 20], ...
       'BandFrequencies2',[25 40], ...
       'BandFrequencies3',[45 65], ...
       'BandFrequencies4',[70 100], ...
       'BandAmplitudes1',[2 2], ...     % Magnitude constraints
       'BandAmplitudes2',[0 0], ...
       'BandAmplitudes3',[1 1], ...
       'BandAmplitudes4',[0 0], ...
       'DesignMethod','ls', ...         % Design method
       'BandWeights1',[1 1]/10, ...     % Design method options
       'BandWeights2',[3 1], ...
       'BandWeights3',[2 4], ...
       'BandWeights4',[5 1], ...
       'SampleRate',200)                % Sample rate

  • If you omit 'FilterOrder', or any of the frequency or magnitude constraints, designfilt generates an error.

  • If you omit 'DesignMethod', designfilt uses the default design method for the specification set.

  • If you omit the design method options, designfilt uses the default values for the design method that you have selected.

  • If you omit 'SampleRate', designfilt sets it to 2 Hz.

Filter Order Argument NamesFrequency Constraint Argument NamesMagnitude Constraint Argument Names'DesignMethod' Argument ValuesDesign Option Argument Names

'FilterOrder'

'Frequencies'

'Amplitudes'

'freqsamp' (default)

'Window'

'equiripple'

'Weights'

'ls'

'Weights'

'FilterOrder'

'NumBands'

'BandFrequencies1'

'BandFrequenciesN'

'BandAmplitudes1'

'BandAmplitudesN'

'equiripple' (default)

'BandWeights1'

'BandWeightsN'

'ls'

'BandWeights1'

'BandWeightsN'

Data Types: char | string

Digital filter, specified as a digitalFilter object generated by designfilt. Use this input to change the specifications of an existing digitalFilter.

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Example: FilterOrder=20,CutoffFrequency=0.4 suffices to specify a lowpass FIR filter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'FilterOrder',20,'CutoffFrequency',0.4 suffices to specify a lowpass FIR filter.

Not all name-value combinations are valid. The valid combinations depend on the filter response that you need and on the frequency and magnitude constraints of your design.

Sample Rate

collapse all

Sample rate, specified as a positive scalar expressed in hertz. To work with normalized frequencies, set 'SampleRate' to 2, or simply omit it.

Data Types: double

Filter Order

collapse all

Filter order, specified as a positive integer scalar.

Data Types: double

Numerator order for IIR filters, specified as a positive integer.

Data Types: double

Denominator order for IIR filters, specified as a positive integer.

Data Types: double

Frequency Constraints

collapse all

Passband frequency, specified as a positive scalar. The frequency value must be within the Nyquist range.

'PassbandFrequency1' is the lower passband frequency for a bandpass or bandstop design.

'PassbandFrequency2' is the higher passband frequency for a bandpass or bandstop design.

Data Types: double

Stopband frequency, specified as a positive scalar. The frequency value must be within the Nyquist range.

'StopbandFrequency1' is the lower stopband frequency for a bandpass or bandstop design.

'StopbandFrequency2' is the higher stopband frequency for a bandpass or bandstop design.

Data Types: double

6-dB frequency, specified as a positive scalar. The frequency value must be within the Nyquist range.

'CutoffFrequency1' is the lower 6-dB frequency for a bandpass or bandstop design.

'CutoffFrequency2' is the higher 6-dB frequency for a bandpass or bandstop design.

Data Types: double

3-dB frequency, specified as a positive scalar. The frequency value must be within the Nyquist range.

'HalfPowerFrequency1' is the lower 3-dB frequency for a bandpass or bandstop design.

'HalfPowerFrequency2' is the higher 3-dB frequency for a bandpass or bandstop design.

Data Types: double

Width of the transition region between passband and stopband for a Hilbert transformer, specified as a positive scalar.

Data Types: double

Response frequencies, specified as a vector. Use this variable to list the frequencies at which a filter of arbitrary magnitude response has desired amplitudes. The frequencies must be monotonically increasing and lie within the Nyquist range. The first element of the vector must be either 0 or fs/2, where fs is the sample rate, and its last element must be fs/2. If you do not specify a sample rate, designfilt uses the default value of 2 Hz.

Data Types: double

Number of bands in a multiband design, specified as a positive integer scalar not greater than 10.

Data Types: double

Multiband response frequencies, specified as numeric vectors. 'BandFrequenciesi', where i runs from 1 through 'NumBands', is a vector containing the frequencies at which the ith band of a multiband design has the desired values, 'BandAmplitudesi'. 'NumBands' can be at most 10. The frequencies must lie within the Nyquist range and must be specified in monotonically increasing order. Adjacent frequency bands must have the same amplitude at their junction.

Data Types: double

Magnitude Constraints

collapse all

Passband ripple, specified as a positive scalar expressed in decibels.

'PassbandRipple1' is the lower-band passband ripple for a bandstop design.

'PassbandRipple2' is the higher-band passband ripple for a bandstop design.

Data Types: double

Stopband attenuation, specified as a positive scalar expressed in decibels.

'StopbandAttenuation1' is the lower-band stopband attenuation for a bandpass design.

'StopbandAttenuation2' is the higher-band stopband attenuation for a bandpass design.

Data Types: double

Desired response amplitudes of an arbitrary magnitude response filter, specified as a vector. Express the amplitudes in linear units. The vector must have the same length as 'Frequencies'.

Data Types: double

Multiband response amplitudes, specified as numeric vectors. 'BandAmplitudesi', where i runs from 1 through 'NumBands', is a vector containing the desired amplitudes in the ith band of a multiband design. 'NumBands' can be at most 10. Express the amplitudes in linear units. 'BandAmplitudesi' must have the same length as 'BandFrequenciesi'. Adjacent frequency bands must have the same amplitude at their junction.

Data Types: double

Design Method

collapse all

Design method, specified as a character vector or string scalar. The choice of design method depends on the set of frequency and magnitude constraints that you specify.

  • 'butter' designs a Butterworth IIR filter. Butterworth filters have a smooth monotonic frequency response that is maximally flat in the passband. They sacrifice rolloff steepness for flatness.

  • 'cheby1' designs a Chebyshev type I IIR filter. Chebyshev type I filters have a frequency response that is equiripple in the passband and maximally flat in the stopband. Their passband ripple increases with increasing rolloff steepness.

  • 'cheby2' designs a Chebyshev type II IIR filter. Chebyshev type II filters have a frequency response that is maximally flat in the passband and equiripple in the stopband.

  • 'cls' designs an FIR filter using constrained least squares. The method minimizes the discrepancy between a specified arbitrary piecewise-linear function and the filter’s magnitude response. At the same time, it lets you set constraints on the passband ripple and stopband attenuation.

  • 'ellip' designs an elliptic IIR filter. Elliptic filters have a frequency response that is equiripple in both passband and stopband.

  • 'equiripple' designs an equiripple FIR filter using the Parks-McClellan algorithm. Equiripple filters have a frequency response that minimizes the maximum ripple magnitude over all bands.

  • 'freqsamp' designs an FIR filter of arbitrary magnitude response by sampling the frequency response uniformly and taking the inverse Fourier transform.

  • 'kaiserwin' designs an FIR filter using the Kaiser window method. The method truncates the impulse response of an ideal filter and uses a Kaiser window to attenuate the resulting truncation oscillations.

  • 'ls' designs an FIR filter using least squares. The method minimizes the discrepancy between a specified arbitrary piecewise-linear function and the filter’s magnitude response.

  • 'maxflat' designs a maximally flat FIR filter. These filters have a smooth monotonic frequency response that is maximally flat in the passband.

  • 'window' uses a least-squares approximation to compute the filter coefficients and then smooths the impulse response with 'Window'.

Data Types: char | string

Design Method Options

collapse all

Minimum order parity of a 'kaiserwin' design, specified as 'any' or 'even'. When you set 'MinOrder' to 'even', designfilt returns a minimum-order filter with even order. When you set 'MinOrder' to 'any', the returned filter can have even or odd order, whichever is smaller.

Data Types: char | string

Window, specified as a vector of length N + 1, where N is the filter order. 'Window' can also be paired with a window name or function handle that specifies the function used to generate the window. Any such function must take N + 1 as first input. Additional inputs can be passed by specifying a cell array. By default, 'Window' is an empty vector for the 'freqsamp' design method and @hamming for the 'window' design method.

For a list of available windows, see Windows.

Example: 'Window',hann(N+1) and 'Window',(1-cos(2*pi*(0:N)'/N))/2 both specify a Hann window to use with a filter of order N.

Example: 'Window','hamming' specifies a Hamming window of the required order.

Example: 'Window',@mywindow lets you define your own window function.

Example: 'Window',{@kaiser,0.5} specifies a Kaiser window of the required order with shape parameter 0.5.

Data Types: double | char | string | function_handle | cell

Band to match exactly, specified as 'stopband', 'passband', or 'both'. 'both' is available only for the elliptic design method, where it is the default. 'stopband' is the default for the 'butter' and 'cheby2' methods. 'passband' is the default for 'cheby1'.

Data Types: char | string

Passband offset, specified as a positive scalar expressed in decibels. 'PassbandOffset' specifies the filter gain in the passband.

Example: 'PassbandOffset',0 results in a filter with unit gain in the passband.

Example: 'PassbandOffset',2 results in a filter with a passband gain of 2 dB or 1.259.

Data Types: double

Scale passband, specified as a logical scalar. When you set 'ScalePassband' to true, the passband is scaled, after windowing, so that the filter has unit gain at zero frequency.

Example: 'Window',{@kaiser,0.1},'ScalePassband',true help specify a filter whose magnitude response at zero frequency is exactly 0 dB. This is not the case when you specify 'ScalePassband',false. To verify, visualize the filter with Filter Analyzer and zoom in.

Data Types: logical

Zero phase, specified as logical scalar. When you set 'ZeroPhase' to true, the zero-phase response of the resulting filter is always positive. This lets you perform spectral factorization on the result and obtain a minimum-phase filter from it.

Data Types: logical

Passband optimization weight, specified as a positive scalar.

'PassbandWeight1' is the lower-band passband optimization weight for a bandstop FIR design.

'PassbandWeight2' is the higher-band passband optimization weight for a bandstop FIR design.

Data Types: double

Stopband optimization weight, specified as a positive scalar.

'StopbandWeight1' is the lower-band stopband optimization weight for a bandpass FIR design.

'StopbandWeight2' is the higher-band stopband optimization weight for a bandpass FIR design.

Data Types: double

Optimization weights, specified as a positive scalar or a vector of the same length as 'Amplitudes'.

Data Types: double

Multiband weights, specified as sets of positive scalars or of vectors. 'BandWeightsi', where i runs from 1 through 'NumBands', is a scalar or vector containing the optimization weights of the ith band of a multiband design. If specified as a vector, 'BandWeightsi' must have the same length as 'BandAmplitudesi'.

Data Types: double

Output Arguments

collapse all

Digital filter, returned as a digitalFilter object.

More About

collapse all

Filter Design Assistant

If you specify an incomplete or inconsistent set of design parameters, designfilt offers to open a Filter Design Assistant.

(In the argument description for resp there is a complete list of valid specification sets for all available response types.)

The assistant behaves differently if you call designfilt at the command line or within a script or function.

Filter Design Assistant at the Command Line

You are given a signal sampled at 2 kHz. You are asked to design a lowpass FIR filter that suppresses frequency components higher than 650 Hz. The “cutoff frequency” sounds like a good candidate for a specification parameter. You type this code at the MATLAB command line.

Fsamp = 2e3;
Fctff = 650;
dee = designfilt("lowpassfir",CutoffFrequency=Fctff, ...
    SampleRate=Fsamp);

Something seems to be amiss because this dialog box appears on your screen.

Filter Design Assistant dialog window

You click Yes and get a new dialog box that offers to generate code. You see that the variables you defined before have been inserted where expected.

Filter Design Assistant dialog for lowpass FIR design

After exploring some of the options offered, you decide to test the corrected filter. You click OK and get this code on the command line.

designfilt("lowpassfir",FilterOrder=10, ...
    CutoffFrequency=Fctff,SampleRate=2000);

You invoke Filter Analyzer and get a frequency response plot.

filterAnalyzer(dee)

Magnitude response plot using Filter Analyzer

The cutoff does not look particularly sharp. The response is above 40 dB for most frequencies. You remember that the assistant had an option to set up a "magnitude constraint" called the "stopband attenuation." Open the assistant by calling designfilt with the filter name as input.

designfilt(dee)

Click the Magnitude constraints drop-down menu and select Passband ripple and stopband attenuation. You see that the design method has changed from Window to FIR constrained least-squares. The default value for the attenuation is 60 dB, which is higher than 40. Click OK and visualize the resulting filter.

dee = designfilt('lowpassfir','FilterOrder',10, ...
    'CutoffFrequency',650,'PassbandRipple',1, ...
    'StopbandAttenuation',60,'SampleRate',2000);
filterAnalyzer(dee)

Magnitude response with passband ripple and stopband attenuation using Filter Analyzer

The cutoff still does not look sharp. The attenuation is indeed 60 dB, but for frequencies above 900 Hz.

Again invoke designfilt with your filter as input.

designfilt(dee)

The assistant reappears.

Filter Design Assistant dialog for modified lowpass FIR design

To narrow the distinction between accepted and rejected frequencies, increase the order of the filter or change Frequency constraints from Cutoff (6dB) frequency to Passband and stopband frequencies. If you change the filter order from 10 to 50, you get a sharper filter.

dee = designfilt('lowpassfir','FilterOrder',50, ...
    'CutoffFrequency',650,'PassbandRipple',1, ...
    'StopbandAttenuation',60,'SampleRate',2000);
filterAnalyzer(dee)

Magnitude response with increased filter order using Filter Analyzer

A little experimentation shows that you can obtain a similar filter by setting the passband and stopband frequencies respectively to 600 Hz and 700 Hz.

dee = designfilt('lowpassfir','PassbandFrequency',600, ...
    'StopbandFrequency',700,'PassbandRipple',1, ...
    'StopbandAttenuation',60,'SampleRate',2000);
filterAnalyzer(dee)

Magnitude response with modified passband and stopband frequencies using Filter Analyzer

Filter Design Assistant in a Script or Function

You are given a signal sampled at 2 kHz. You are asked to design a highpass filter that stops frequencies below 700 Hz. You don’t care about the phase of the signal, and you need to work with a low-order filter. Thus an IIR filter seems adequate. You are not sure what filter order is best, so you write a function that accepts the order as input. Open the MATLAB Editor and create the file.

function dataOut = hipassfilt(Order,dataIn)
hpFilter = designfilt('highpassiir','FilterOrder',N);
dataOut = filter(hpFilter,dataIn);
end

To test your function, create a signal composed of two sinusoids with frequencies 500 and 800 Hz and generate samples for 0.1 s. A 5th-order filter seems reasonable as an initial guess. Create a script called driveHPfilt.m.

% script driveHPfilt.m
Fsamp = 2e3;
Fsm = 500;
Fbg = 800;
t = 0:1/Fsamp:0.1;
sgin = sin(2*pi*Fsm*t)+sin(2*pi*Fbg*t);
N = 5;
sgout = hipassfilt(N,sgin);

When you run the script at the command line, you get an error message.

Error message display for

The error message gives you the choice of opening an assistant to correct the MATLAB code. Click Click here to get the Filter Design Assistant on your screen.

Filter Design Assistant dialog for highpass IIR design

You see the problem: You did not specify the frequency constraint. You also forgot to set a sample rate. After experimenting, you find that you can specify Frequency units as Hz, Passband frequency equal to 700 Hz, and Input Fs equal to 2000 Hz. The Design method changes from Butterworth to Chebyshev type I. You click OK and get this on the command line.

hp = designfilt('highpassiir','FilterOrder',N, ...
    'PassbandFrequency',700,'PassbandRipple',1, ...
    'SampleRate',2000);

The new digitalFilter object hp is saved to the workspace. Depending on your design constraints, you can change your specification set.

Filter Design Assistant Preferences

You can set designfilt to never offer the Filter Design Assistant. This action sets a MATLAB preference that can be unset with setpref:

  • Use setpref('dontshowmeagain','filterDesignAssistant',false) to be offered the assistant every time. With this command, you can get the assistant again after having disabled it.

  • Use setpref('dontshowmeagain','filterDesignAssistant',true) to disable the assistant permanently. You can also click Do not show this message again in the initial dialog box.

You can set designfilt to always correct faulty specifications without asking. This action sets a MATLAB preference that can be unset by using setpref:

  • Use setpref('dontshowmeagain','filterDesignAssistantCodeCorrection',false) to have designfilt correct your MATLAB code without asking for confirmation. You can also click Always accept in the confirmation dialog box.

  • Use setpref('dontshowmeagain','filterDesignAssistantCodeCorrection',true) to ensure that designfilt corrects your MATLAB code only when you confirm you want the changes. With this command, you can undo the effect of having clicked Always accept in the confirmation dialog box.

Troubleshooting

There are some instances in which, given an invalid set of specifications, designfilt does not offer a Filter Design Assistant, either through a dialog box or through a link in an error message.

  • You are not offered an assistant if you use code-section evaluation, either from the MATLAB Toolstrip or by pressing Ctrl+Enter. (See Divide Your File into Sections for more information.)

  • You are not offered an assistant if your code has multiple calls to designfilt, at least one of those calls is incorrect, and

    • You paste the code on the command line and execute it by pressing Enter.

    • You select the code in the Editor and execute it by pressing F9.

  • You are not offered an assistant if you run designfilt using an anonymous function. (See Anonymous Functions for more information.) For example, this input offers an assistant.

    d = designfilt('lowpassfir','CutoffFrequency',0.6)
    This input does not.
    myFilterDesigner = @designfilt;
    d = myFilterDesigner('lowpassfir','CutoffFrequency',0.6)

  • You are not offered an assistant if you run designfilt using eval. For example, this input offers an assistant.

    d = designfilt('lowpassfir','CutoffFrequency',0.6)
    This input does not.
    myFilterDesigner = ...
        sprintf('designfilt(''%s'',''CutoffFrequency'',%f)', ...
        'lowpassfir',0.6);
    d = eval(myFilterDesigner)

The Filter Design Assistant requires Java® software and the MATLAB desktop to run. It is not supported if you run MATLAB with the -nojvm, -nodisplay, or -nodesktop options.

Version History

Introduced in R2014a

expand all