Error using surf X, Y, Z, and C cannot be complex error

10 views (last 30 days)
i run this code, but get this message Error using surf X, Y, Z, and C cannot be complex error, any idea what is wrong?
clc
theta5=[0:0.2:pi];
theta4=[0:0.2:pi];
for M=1:length(theta4)
for N=1:length(theta5)
H(M,N)=cos(theta4(M))*sin(theta5(N));
end
end
[X,Y]=meshgrid(theta4,theta5);
surf(Y,X,H)

Accepted Answer

John BG
John BG on 15 Jan 2018
Hi
The problem is not in solving
x = 0:0.8:pi;
A = sin(x).^(1/3)
B = cos(x).^(1/3)
the operator
.^
solves for either real or complex.
The problem lays in the fact that surf doesn't take in complex values.
To solve the long expression of H, since you are dealing with complex numbers, you have to plot 2 surfs, not one: Real and Imaginary, or Modulus and Phase
clc
theta5=[0:0.1:pi];
theta4=[0:0.1:pi];
[X,Y]=meshgrid(theta4,theta5);
H=(((((cos(Y).^2-cos(X).^2-sin(X).^2+cos(X).^2.*sin(Y).^2+sin(X).^2.*sin(Y).^2).*(cos(X).^2.*cos(Y).^2-cos(X).^2*sin(X).^2+cos(Y).^2.*sin(X).^2+cos(X).^2.*cos(Y).^4.*sin(X).^2+2*cos(X).^2.*sin(X).^2.*sin(Y).^2-cos(Y).^2.*sin(X).^2.*sin(Y).^2-cos(X).^2.*sin(X).^2.*sin(Y).^4))./6+(cos(Y).^2-cos(X).^2-sin(X).^2+cos(X).^2.*sin(Y).^2+sin(X).^2.*sin(Y).^2).^3./27+(cos(X).^2.*cos(Y).^2.*sin(X).^2)./2-(cos(X).^2.*cos(Y).^6.*sin(X).^2)./2-(cos(X).^2.*cos(Y).^2.*sin(X).^2.*sin(Y).^2)./2-cos(X).^2.*cos(Y).^4.*sin(X).^2.*sin(Y).^2).^2-((cos(X).^2.*cos(Y).^2)./3-(cos(X).^2.*sin(X).^2)./3+(cos(Y).^2.*sin(X).^2)./3+(cos(Y).^2-cos(X).^2-sin(X).^2+cos(X).^2.*sin(X).^2+sin(X).^2.*sin(Y).^2).^2./9+(cos(X).^2*cos(Y).^4.*sin(X).^2)./3+(2.*cos(X).^2.*sin(X).^2.*sin(Y).^2)./3-(cos(Y).^2.*sin(X).^2.*sin(Y).^2)./3-(cos(X).^2.*sin(X).^2.*sin(Y).^4)./3).^3).^(1/2)-((cos(Y).^2-cos(X).^2-sin(X).^2+cos(X).^2.*sin(Y).^2+sin(X).^2.*sin(Y).^2).*(cos(X).^2.*cos(Y).^2-cos(X).^2.*sin(X).^2+cos(Y).^2.*sin(X).^2+cos(X).^2.*cos(Y).^4.*sin(X).^2+2.*cos(X).^2.*sin(X).^2.*sin(Y).^2-cos(Y).^2.*sin(X).^2.*sin(Y).^2-cos(X).^2.*sin(X).^2.*sin(Y).^4))./6-(cos(Y).^2-cos(X).^2-sin(X).^2+cos(X).^2.*sin(Y).^2+sin(X).^2.*sin(Y).^2).^3./27-(cos(X).^2.*cos(Y).^2.*sin(X).^2)./2+(cos(X).^2.*cos(Y).^6.*sin(X).^2)./2+(cos(X).^2.*cos(Y).^2.*sin(X).^2.*sin(Y).^2)./2+cos(X).^2.*cos(Y).^4.*sin(X).^2.*sin(Y).^2).^(1/3)+cos(X).^2./3-cos(Y).^2./3+sin(X).^2./3+((cos(X).^2.*cos(Y).^2)./3-(cos(X).^2.*sin(X).^2)./3+(cos(Y).^2.*sin(X).^2)./3+(cos(Y).^2-cos(X).^2-sin(X).^2+cos(X).^2.*sin(Y).^2+sin(X).^2.*sin(Y).^2).^2./9+(cos(X).^2.*cos(Y).^4.*sin(X).^2)./3+(2*cos(X).^2.*sin(X).^2.*sin(Y).^2)./3-(cos(Y).^2.*sin(X).^2.*sin(Y).^2)./3-(cos(X).^2.*sin(X).^2.*sin(Y).^4)./3)./(((((cos(Y).^2-cos(X).^2-sin(X).^2+cos(X).^2.*sin(Y).^2+sin(X).^2.*sin(Y).^2).*(cos(X).^2.*cos(Y).^2-cos(X).^2.*sin(X).^2+cos(Y).^2.*sin(X).^2+cos(X).^2.*cos(Y).^4.*sin(X).^2+2.*cos(X).^2.*sin(X).^2.*sin(Y).^2-cos(Y).^2.*sin(X).^2.*sin(X).^2-cos(X).^2.*sin(X).^2.*sin(Y).^4))./6+(cos(Y).^2-cos(X).^2-sin(X).^2+cos(X).^2.*sin(Y).^2+sin(X).^2.*sin(Y).^2).^3./27+(cos(X).^2.*cos(Y).^2.*sin(X).^2)./2-(cos(X).^2.*cos(Y).^6.*sin(X).^2)./2-(cos(X).^2.*cos(Y).^2.*sin(X).^2.*sin(Y).^2)./2-cos(X).^2.*cos(Y).^4.*sin(X).^2.*sin(Y).^2).^2-((cos(X).^2.*cos(Y).^2)./3-(cos(X).^2.*sin(X).^2)./3+(cos(Y).^2.*sin(X).^2)./3+(cos(Y).^2-cos(X).^2-sin(X).^2+cos(X).^2.*sin(Y).^2+sin(X).^2.*sin(Y).^2).^2./9+(cos(X).^2.*cos(Y).^4.*sin(X).^2)./3+(2.*cos(X).^2.*sin(X).^2.*sin(Y).^2)./3-(cos(Y).^2.*sin(X).^2.*sin(Y).^2)./3-(cos(X).^2.*sin(X).^2.*sin(Y).^4)./3).^3).^(1/2)-((cos(Y).^2-cos(X).^2-sin(X).^2+cos(X).^2.*sin(Y).^2+sin(X).^2.*sin(Y).^2).*(cos(X).^2.*cos(Y).^2-cos(X).^2.*sin(X).^2+cos(Y).^2.*sin(X)^2+cos(X).^2.*cos(Y).^4.*sin(X).^2+2.*cos(X).^2.*sin(X).^2.*sin(Y).^2-cos(Y).^2.*sin(X).^2.*sin(Y).^2-cos(X).^2.*sin(X).^2.*sin(Y).^4))./6-(cos(Y).^2-cos(X).^2-sin(X).^2+cos(X).^2.*sin(Y).^2+sin(X).^2.*sin(Y).^2).^3./27-(cos(X).^2.*cos(Y).^2.*sin(X).^2)./2+(cos(X).^2.*cos(Y).^6.*sin(X).^2)./2+(cos(X).^2.*cos(Y).^2.*sin(X).^2.*sin(Y).^2)./2+cos(X).^2.*cos(Y).^4.*sin(X).^2.*sin(Y).^2).^(1/3)-(cos(X).^2.*sin(Y).^2)./3-(sin(X).^2.*sin(Y).^2)./3;
figure(1);surf(X,Y,abs(H))
figure(2);surf(X,Y,angle(H))
.
if you find this answer useful would you please be so kind to consider marking my answer as Accepted Answer?
To any other reader, if you find this answer useful please consider clicking on the thumbs-up vote link
thanks in advance for time and attention
John BG
  2 Comments
Dikra dikra
Dikra dikra on 16 Jan 2018
Edited: Dikra dikra on 16 Jan 2018
Thank you. You are right. This helped me

Sign in to comment.

More Answers (1)

Star Strider
Star Strider on 14 Jan 2018
Your code runs for me without error.
A more efficient approach would be:
theta5=[0:0.2:pi];
theta4=[0:0.2:pi];
[X,Y]=meshgrid(theta4,theta5);
H = cos(X).*sin(Y);
surf(Y,X,H)
  10 Comments
Carlos Guerrero García
Carlos Guerrero García on 23 Nov 2022
Edited: Carlos Guerrero García on 23 Nov 2022
The line defining H is too long for me, but the error detected by Star Strider (my +1 for StarStrider) can be solved using the "nthroot" command, and so, my suggestion for
x = 0:0.8:pi;
A = sin(x).^(1/3)
A = 1×4
0 0.8952 0.9999 0.8774
B = cos(x).^(1/3)
B =
1.0000 + 0.0000i 0.8865 + 0.0000i 0.1540 + 0.2667i 0.4517 + 0.7824i
is
x = 0:0.8:pi;
A = nthroot(sin(x),3)
A = 1×4
0 0.8952 0.9999 0.8774
B = nthroot(cos(x),3)
B = 1×4
1.0000 0.8865 -0.3079 -0.9034
Perhaps the same idea will be useful, but perhaps another way to plot that surface must be consider (perhaps as an implicit surface, but I don't know about how the parametrization appears). Also note that real(cos(1.6)^(1/3)), imag(cos(1.6)^(1/3)) and nthroot(cos(1.6),3) are not the same

Sign in to comment.

Categories

Find more on Fourier Analysis and Filtering in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!