Note: This page has been translated by MathWorks. Click here to see

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

Single-level discrete 2-D wavelet transform

`[cA,cH,cV,cD] = dwt2(X,wname)`

`[cA,cH,cV,cD] = dwt2(X,LoD,HiD)`

`[cA,cH,cV,cD] = dwt2(___,'mode',extmode)`

The 2-D wavelet decomposition algorithm for images is similar to the one-dimensional
case. The two-dimensional wavelet and scaling functions are obtained by taking the
tensor products of the one-dimensional wavelet and scaling functions. This kind of
two-dimensional DWT leads to a decomposition of approximation coefficients at level
*j* in four components: the approximation at level
*j* + 1, and the details in three orientations (horizontal,
vertical, and diagonal). The following chart describes the basic decomposition steps for
images.

— Downsample columns: keep the even indexed columns

— Downsample rows: keep the even indexed rows

— Convolve with filter

*X*the rows of the entry— Convolve with filter

*X*the columns of the entry

The decomposition is initialized by setting the approximation
coefficients equal to the image *s*: $$C{A}_{0}=s$$.

To deal with signal-end effects introduced by a convolution-based algorithm, the
1-D and 2-D DWT use a global variable managed by `dwtmode`

. This variable defines
the kind of signal extension mode used. The possible options include zero-padding
and symmetric extension, which is the default mode.

[1] Daubechies, I. *Ten Lectures on Wavelets*, CBMS-NSF Regional
Conference Series in Applied Mathematics. Philadelphia, PA: SIAM Ed, 1992.

[2] Mallat, S. G. “A Theory for Multiresolution Signal Decomposition: The
Wavelet Representation,” *IEEE Transactions on Pattern Analysis and
Machine Intelligence*. Vol. 11, Issue 7, July 1989, pp.
674–693.

[3] Meyer, Y. *Wavelets and Operators*. Translated by D. H.
Salinger. Cambridge, UK: Cambridge University Press, 1995.