# RegressionKernel

Gaussian kernel regression model using random feature expansion

## Description

`RegressionKernel` is a trained model object for Gaussian kernel regression using random feature expansion. `RegressionKernel` is more practical for big data applications that have large training sets but can also be applied to smaller data sets that fit in memory.

Unlike other regression models, and for economical memory usage, `RegressionKernel` model objects do not store the training data. However, they do store information such as the dimension of the expanded space, the kernel scale parameter, and the regularization strength.

You can use trained `RegressionKernel` models to continue training using the training data, predict responses for new data, and compute the mean squared error or epsilon-insensitive loss. For details, see `resume`, `predict`, and `loss`.

## Creation

Create a `RegressionKernel` object using the `fitrkernel` function. This function maps data in a low-dimensional space into a high-dimensional space, then fits a linear model in the high-dimensional space by minimizing the regularized objective function. Obtaining the linear model in the high-dimensional space is equivalent to applying the Gaussian kernel to the model in the low-dimensional space. Available linear regression models include regularized support vector machines (SVM) and least-squares regression models.

## Properties

expand all

### Kernel Regression Properties

Half the width of the epsilon-insensitive band, specified as a nonnegative scalar.

If `Learner` is not `'svm'`, then `Epsilon` is an empty array (`[]`).

Data Types: `single` | `double`

Linear regression model type, specified as `'leastsquares'` or `'svm'`.

In the following table, $f\left(x\right)=T\left(x\right)\beta +b.$

• x is an observation (row vector) from p predictor variables.

• $T\left(·\right)$ is a transformation of an observation (row vector) for feature expansion. T(x) maps x in ${ℝ}^{p}$ to a high-dimensional space (${ℝ}^{m}$).

• β is a vector of coefficients.

• b is the scalar bias.

ValueAlgorithmLoss Function`FittedLoss` Value
`'svm'`Support vector machine regressionEpsilon insensitive: $\ell \left[y,f\left(x\right)\right]=\mathrm{max}\left[0,|y-f\left(x\right)|-\epsilon \right]$`'epsiloninsensitive'`
`'leastsquares'`Linear regression through ordinary least squaresMean squared error (MSE): $\ell \left[y,f\left(x\right)\right]=\frac{1}{2}{\left[y-f\left(x\right)\right]}^{2}$`'mse'`

Number of dimensions of the expanded space, specified as a positive integer.

Data Types: `single` | `double`

Kernel scale parameter, specified as a positive scalar.

Data Types: `single` | `double`

Box constraint, specified as a positive scalar.

Data Types: `double` | `single`

Regularization term strength, specified as a nonnegative scalar.

Data Types: `single` | `double`

Since R2023b

Predictor means, specified as a numeric vector. If you specify `Standardize` as `1` or `true` when you train the kernel model, then the length of the `Mu` vector is equal to the number of expanded predictors (see `ExpandedPredictorNames`). The vector contains `0` values for dummy variables corresponding to expanded categorical predictors.

If you set `Standardize` to `0` or `false` when you train the kernel model, then the `Mu` value is an empty vector (`[]`).

Data Types: `double`

Since R2023b

Predictor standard deviations, specified as a numeric vector. If you specify `Standardize` as `1` or `true` when you train the kernel model, then the length of the `Sigma` vector is equal to the number of expanded predictors (see `ExpandedPredictorNames`). The vector contains `1` values for dummy variables corresponding to expanded categorical predictors.

If you set `Standardize` to `0` or `false` when you train the kernel model, then the `Sigma` value is an empty vector (`[]`).

Data Types: `double`

Loss function used to fit the linear model, specified as `'epsiloninsensitive'` or `'mse'`.

ValueAlgorithmLoss Function`Learner` Value
`'epsiloninsensitive'`Support vector machine regressionEpsilon insensitive: $\ell \left[y,f\left(x\right)\right]=\mathrm{max}\left[0,|y-f\left(x\right)|-\epsilon \right]$`'svm'`
`'mse'`Linear regression through ordinary least squaresMean squared error (MSE): $\ell \left[y,f\left(x\right)\right]=\frac{1}{2}{\left[y-f\left(x\right)\right]}^{2}$`'leastsquares'`

Complexity penalty type, specified as `'lasso (L1)'` or ```'ridge (L2)'```.

The software composes the objective function for minimization from the sum of the average loss function (see `FittedLoss`) and a regularization value from this table.

ValueDescription
`'lasso (L1)'`Lasso (L1) penalty: $\lambda \sum _{j=1}^{p}|{\beta }_{j}|$
`'ridge (L2)'`Ridge (L2) penalty: $\frac{\lambda }{2}\sum _{j=1}^{p}{\beta }_{j}^{2}$

λ specifies the regularization term strength (see `Lambda`).

The software excludes the bias term (β0) from the regularization penalty.

### Other Regression Properties

Categorical predictor indices, specified as a vector of positive integers. `CategoricalPredictors` contains index values indicating that the corresponding predictors are categorical. The index values are between 1 and `p`, where `p` is the number of predictors used to train the model. If none of the predictors are categorical, then this property is empty (`[]`).

Data Types: `single` | `double`

Parameters used for training the `RegressionKernel` model, specified as a structure.

Access fields of `ModelParameters` using dot notation. For example, access the relative tolerance on the linear coefficients and the bias term by using `Mdl.ModelParameters.BetaTolerance`.

Data Types: `struct`

Predictor names in order of their appearance in the predictor data, specified as a cell array of character vectors. The length of `PredictorNames` is equal to the number of columns used as predictor variables in the training data `X` or `Tbl`.

Data Types: `cell`

Expanded predictor names, specified as a cell array of character vectors.

If the model uses encoding for categorical variables, then `ExpandedPredictorNames` includes the names that describe the expanded variables. Otherwise, `ExpandedPredictorNames` is the same as `PredictorNames`.

Data Types: `cell`

Response variable name, specified as a character vector.

Data Types: `char`

Response transformation function to apply to predicted responses, specified as `'none'` or a function handle.

For kernel regression models and before the response transformation, the predicted response for the observation x (row vector) is $f\left(x\right)=T\left(x\right)\beta +b.$

• $T\left(·\right)$ is a transformation of an observation for feature expansion.

• β corresponds to `Mdl.Beta`.

• b corresponds to `Mdl.Bias`.

For a MATLAB® function or a function that you define, enter its function handle. For example, you can enter ```Mdl.ResponseTransform = @function```, where `function` accepts a numeric vector of the original responses and returns a numeric vector of the same size containing the transformed responses.

Data Types: `char` | `function_handle`

## Object Functions

 `incrementalLearner` Convert kernel regression model to incremental learner `lime` Local interpretable model-agnostic explanations (LIME) `loss` Regression loss for Gaussian kernel regression model `partialDependence` Compute partial dependence `plotPartialDependence` Create partial dependence plot (PDP) and individual conditional expectation (ICE) plots `predict` Predict responses for Gaussian kernel regression model `resume` Resume training of Gaussian kernel regression model `shapley` Shapley values

## Examples

collapse all

Train a kernel regression model for a tall array by using SVM.

When you perform calculations on tall arrays, MATLAB® uses either a parallel pool (default if you have Parallel Computing Toolbox™) or the local MATLAB session. To run the example using the local MATLAB session when you have Parallel Computing Toolbox, change the global execution environment by using the `mapreducer` function.

`mapreducer(0)`

Create a datastore that references the folder location with the data. The data can be contained in a single file, a collection of files, or an entire folder. Treat `'NA'` values as missing data so that `datastore` replaces them with `NaN` values. Select a subset of the variables to use. Create a tall table on top of the datastore.

```varnames = {'ArrTime','DepTime','ActualElapsedTime'}; ds = datastore('airlinesmall.csv','TreatAsMissing','NA',... 'SelectedVariableNames',varnames); t = tall(ds);```

Specify `DepTime` and `ArrTime` as the predictor variables (`X`) and `ActualElapsedTime` as the response variable (`Y`). Select the observations for which `ArrTime` is later than `DepTime`.

```daytime = t.ArrTime>t.DepTime; Y = t.ActualElapsedTime(daytime); % Response data X = t{daytime,{'DepTime' 'ArrTime'}}; % Predictor data```

Standardize the predictor variables.

`Z = zscore(X); % Standardize the data`

Train a default Gaussian kernel regression model with the standardized predictors. Extract a fit summary to determine how well the optimization algorithm fits the model to the data.

`[Mdl,FitInfo] = fitrkernel(Z,Y)`
```Found 6 chunks. |========================================================================= | Solver | Iteration / | Objective | Gradient | Beta relative | | | Data Pass | | magnitude | change | |========================================================================= | INIT | 0 / 1 | 4.307833e+01 | 9.925486e-02 | NaN | | LBFGS | 0 / 2 | 2.782790e+01 | 7.202403e-03 | 9.891473e-01 | | LBFGS | 1 / 3 | 2.781351e+01 | 1.806211e-02 | 3.220672e-03 | | LBFGS | 2 / 4 | 2.777773e+01 | 2.727737e-02 | 9.309939e-03 | | LBFGS | 3 / 5 | 2.768591e+01 | 2.951422e-02 | 2.833343e-02 | | LBFGS | 4 / 6 | 2.755857e+01 | 5.124144e-02 | 7.935278e-02 | | LBFGS | 5 / 7 | 2.738896e+01 | 3.089571e-02 | 4.644920e-02 | | LBFGS | 6 / 8 | 2.716704e+01 | 2.552696e-02 | 8.596406e-02 | | LBFGS | 7 / 9 | 2.696409e+01 | 3.088621e-02 | 1.263589e-01 | | LBFGS | 8 / 10 | 2.676203e+01 | 2.021303e-02 | 1.533927e-01 | | LBFGS | 9 / 11 | 2.660322e+01 | 1.221361e-02 | 1.351968e-01 | | LBFGS | 10 / 12 | 2.645504e+01 | 1.486501e-02 | 1.175476e-01 | | LBFGS | 11 / 13 | 2.631323e+01 | 1.772835e-02 | 1.161909e-01 | | LBFGS | 12 / 14 | 2.625264e+01 | 5.837906e-02 | 1.422851e-01 | | LBFGS | 13 / 15 | 2.619281e+01 | 1.294441e-02 | 2.966283e-02 | | LBFGS | 14 / 16 | 2.618220e+01 | 3.791806e-03 | 9.051274e-03 | | LBFGS | 15 / 17 | 2.617989e+01 | 3.689255e-03 | 6.364132e-03 | | LBFGS | 16 / 18 | 2.617426e+01 | 4.200232e-03 | 1.213026e-02 | | LBFGS | 17 / 19 | 2.615914e+01 | 7.339928e-03 | 2.803348e-02 | | LBFGS | 18 / 20 | 2.620704e+01 | 2.298098e-02 | 1.749830e-01 | |========================================================================= | Solver | Iteration / | Objective | Gradient | Beta relative | | | Data Pass | | magnitude | change | |========================================================================= | LBFGS | 18 / 21 | 2.615554e+01 | 1.164689e-02 | 8.580878e-02 | | LBFGS | 19 / 22 | 2.614367e+01 | 3.395507e-03 | 3.938314e-02 | | LBFGS | 20 / 23 | 2.614090e+01 | 2.349246e-03 | 1.495049e-02 | |========================================================================| ```
```Mdl = RegressionKernel ResponseName: 'Y' Learner: 'svm' NumExpansionDimensions: 64 KernelScale: 1 Lambda: 8.5385e-06 BoxConstraint: 1 Epsilon: 5.9303 ```
```FitInfo = struct with fields: Solver: 'LBFGS-tall' LossFunction: 'epsiloninsensitive' Lambda: 8.5385e-06 BetaTolerance: 1.0000e-03 GradientTolerance: 1.0000e-05 ObjectiveValue: 26.1409 GradientMagnitude: 0.0023 RelativeChangeInBeta: 0.0150 FitTime: 56.3717 History: [1x1 struct] ```

`Mdl` is a `RegressionKernel` model. To inspect the regression error, you can pass `Mdl` and the training data or new data to the `loss` function. Or, you can pass `Mdl` and new predictor data to the `predict` function to predict responses for new observations. You can also pass `Mdl` and the training data to the `resume` function to continue training.

`FitInfo` is a structure array containing optimization information. Use `FitInfo` to determine whether optimization termination measurements are satisfactory.

For improved accuracy, you can increase the maximum number of optimization iterations (`'IterationLimit'`) and decrease the tolerance values (`'BetaTolerance'` and `'GradientTolerance'`) by using the name-value pair arguments of `fitrkernel`. Doing so can improve measures like `ObjectiveValue` and `RelativeChangeInBeta` in `FitInfo`. You can also optimize model parameters by using the `'OptimizeHyperparameters'` name-value pair argument.

Resume training a Gaussian kernel regression model for more iterations to improve the regression loss.

Load the `carbig` data set.

`load carbig`

Specify the predictor variables (`X`) and the response variable (`Y`).

```X = [Acceleration,Cylinders,Displacement,Horsepower,Weight]; Y = MPG;```

Delete rows of `X` and `Y` where either array has `NaN` values. Removing rows with `NaN` values before passing data to `fitrkernel` can speed up training and reduce memory usage.

```R = rmmissing([X Y]); % Data with missing entries removed X = R(:,1:5); Y = R(:,end); ```

Reserve 10% of the observations as a holdout sample. Extract the training and test indices from the partition definition.

```rng(10) % For reproducibility N = length(Y); cvp = cvpartition(N,'Holdout',0.1); idxTrn = training(cvp); % Training set indices idxTest = test(cvp); % Test set indices```

Train a kernel regression model. Standardize the training data, set the iteration limit to 5, and specify `'Verbose',1` to display diagnostic information.

```Xtrain = X(idxTrn,:); Ytrain = Y(idxTrn); Mdl = fitrkernel(Xtrain,Ytrain,'Standardize',true, ... 'IterationLimit',5,'Verbose',1)```
```|=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 0 | 5.691016e+00 | 0.000000e+00 | 5.852758e-02 | | 0 | | LBFGS | 1 | 1 | 5.086537e+00 | 8.000000e+00 | 5.220869e-02 | 9.846711e-02 | 256 | | LBFGS | 1 | 2 | 3.862301e+00 | 5.000000e-01 | 3.796034e-01 | 5.998808e-01 | 256 | | LBFGS | 1 | 3 | 3.460613e+00 | 1.000000e+00 | 3.257790e-01 | 1.615091e-01 | 256 | | LBFGS | 1 | 4 | 3.136228e+00 | 1.000000e+00 | 2.832861e-02 | 8.006254e-02 | 256 | | LBFGS | 1 | 5 | 3.063978e+00 | 1.000000e+00 | 1.475038e-02 | 3.314455e-02 | 256 | |=================================================================================================================| ```
```Mdl = RegressionKernel ResponseName: 'Y' Learner: 'svm' NumExpansionDimensions: 256 KernelScale: 1 Lambda: 0.0028 BoxConstraint: 1 Epsilon: 0.8617 ```

`Mdl` is a` RegressionKernel` model.

Estimate the epsilon-insensitive error for the test set.

```Xtest = X(idxTest,:); Ytest = Y(idxTest); L = loss(Mdl,Xtest,Ytest,'LossFun','epsiloninsensitive')```
```L = 2.0674 ```

Continue training the model by using `resume`. This function continues training with the same options used for training `Mdl`.

`UpdatedMdl = resume(Mdl,Xtrain,Ytrain);`
```|=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 0 | 3.063978e+00 | 0.000000e+00 | 1.475038e-02 | | 256 | | LBFGS | 1 | 1 | 3.007822e+00 | 8.000000e+00 | 1.391637e-02 | 2.603966e-02 | 256 | | LBFGS | 1 | 2 | 2.817171e+00 | 5.000000e-01 | 5.949008e-02 | 1.918084e-01 | 256 | | LBFGS | 1 | 3 | 2.807294e+00 | 2.500000e-01 | 6.798867e-02 | 2.973097e-02 | 256 | | LBFGS | 1 | 4 | 2.791060e+00 | 1.000000e+00 | 2.549575e-02 | 1.639328e-02 | 256 | | LBFGS | 1 | 5 | 2.767821e+00 | 1.000000e+00 | 6.154419e-03 | 2.468903e-02 | 256 | | LBFGS | 1 | 6 | 2.738163e+00 | 1.000000e+00 | 5.949008e-02 | 9.476263e-02 | 256 | | LBFGS | 1 | 7 | 2.719146e+00 | 1.000000e+00 | 1.699717e-02 | 1.849972e-02 | 256 | | LBFGS | 1 | 8 | 2.705941e+00 | 1.000000e+00 | 3.116147e-02 | 4.152590e-02 | 256 | | LBFGS | 1 | 9 | 2.701162e+00 | 1.000000e+00 | 5.665722e-03 | 9.401466e-03 | 256 | | LBFGS | 1 | 10 | 2.695341e+00 | 5.000000e-01 | 3.116147e-02 | 4.968046e-02 | 256 | | LBFGS | 1 | 11 | 2.691277e+00 | 1.000000e+00 | 8.498584e-03 | 1.017446e-02 | 256 | | LBFGS | 1 | 12 | 2.689972e+00 | 1.000000e+00 | 1.983003e-02 | 9.938921e-03 | 256 | | LBFGS | 1 | 13 | 2.688979e+00 | 1.000000e+00 | 1.416431e-02 | 6.606316e-03 | 256 | | LBFGS | 1 | 14 | 2.687787e+00 | 1.000000e+00 | 1.621956e-03 | 7.089542e-03 | 256 | | LBFGS | 1 | 15 | 2.686539e+00 | 1.000000e+00 | 1.699717e-02 | 1.169701e-02 | 256 | | LBFGS | 1 | 16 | 2.685356e+00 | 1.000000e+00 | 1.133144e-02 | 1.069310e-02 | 256 | | LBFGS | 1 | 17 | 2.685021e+00 | 5.000000e-01 | 1.133144e-02 | 2.104248e-02 | 256 | | LBFGS | 1 | 18 | 2.684002e+00 | 1.000000e+00 | 2.832861e-03 | 6.175231e-03 | 256 | | LBFGS | 1 | 19 | 2.683507e+00 | 1.000000e+00 | 5.665722e-03 | 3.724026e-03 | 256 | | LBFGS | 1 | 20 | 2.683343e+00 | 5.000000e-01 | 5.665722e-03 | 9.549119e-03 | 256 | |=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 21 | 2.682897e+00 | 1.000000e+00 | 5.665722e-03 | 7.172867e-03 | 256 | | LBFGS | 1 | 22 | 2.682682e+00 | 1.000000e+00 | 2.832861e-03 | 2.587726e-03 | 256 | | LBFGS | 1 | 23 | 2.682485e+00 | 1.000000e+00 | 2.832861e-03 | 2.953648e-03 | 256 | | LBFGS | 1 | 24 | 2.682326e+00 | 1.000000e+00 | 2.832861e-03 | 7.777294e-03 | 256 | | LBFGS | 1 | 25 | 2.681914e+00 | 1.000000e+00 | 2.832861e-03 | 2.778555e-03 | 256 | | LBFGS | 1 | 26 | 2.681867e+00 | 5.000000e-01 | 1.031085e-03 | 3.638352e-03 | 256 | | LBFGS | 1 | 27 | 2.681725e+00 | 1.000000e+00 | 5.665722e-03 | 1.515199e-03 | 256 | | LBFGS | 1 | 28 | 2.681692e+00 | 5.000000e-01 | 1.314940e-03 | 1.850055e-03 | 256 | | LBFGS | 1 | 29 | 2.681625e+00 | 1.000000e+00 | 2.832861e-03 | 1.456903e-03 | 256 | | LBFGS | 1 | 30 | 2.681594e+00 | 5.000000e-01 | 2.832861e-03 | 8.704875e-04 | 256 | | LBFGS | 1 | 31 | 2.681581e+00 | 5.000000e-01 | 8.498584e-03 | 3.934768e-04 | 256 | | LBFGS | 1 | 32 | 2.681579e+00 | 1.000000e+00 | 8.498584e-03 | 1.847866e-03 | 256 | | LBFGS | 1 | 33 | 2.681553e+00 | 1.000000e+00 | 9.857038e-04 | 6.509825e-04 | 256 | | LBFGS | 1 | 34 | 2.681541e+00 | 5.000000e-01 | 8.498584e-03 | 6.635528e-04 | 256 | | LBFGS | 1 | 35 | 2.681499e+00 | 1.000000e+00 | 5.665722e-03 | 6.194735e-04 | 256 | | LBFGS | 1 | 36 | 2.681493e+00 | 5.000000e-01 | 1.133144e-02 | 1.617763e-03 | 256 | | LBFGS | 1 | 37 | 2.681473e+00 | 1.000000e+00 | 9.869233e-04 | 8.418484e-04 | 256 | | LBFGS | 1 | 38 | 2.681469e+00 | 1.000000e+00 | 5.665722e-03 | 1.069722e-03 | 256 | | LBFGS | 1 | 39 | 2.681432e+00 | 1.000000e+00 | 2.832861e-03 | 8.501930e-04 | 256 | | LBFGS | 1 | 40 | 2.681423e+00 | 2.500000e-01 | 1.133144e-02 | 9.543716e-04 | 256 | |=================================================================================================================| | Solver | Pass | Iteration | Objective | Step | Gradient | Relative | sum(beta~=0) | | | | | | | magnitude | change in Beta | | |=================================================================================================================| | LBFGS | 1 | 41 | 2.681416e+00 | 1.000000e+00 | 2.832861e-03 | 8.763251e-04 | 256 | | LBFGS | 1 | 42 | 2.681413e+00 | 5.000000e-01 | 2.832861e-03 | 4.101888e-04 | 256 | | LBFGS | 1 | 43 | 2.681403e+00 | 1.000000e+00 | 5.665722e-03 | 2.713209e-04 | 256 | | LBFGS | 1 | 44 | 2.681392e+00 | 1.000000e+00 | 2.832861e-03 | 2.115241e-04 | 256 | | LBFGS | 1 | 45 | 2.681383e+00 | 1.000000e+00 | 2.832861e-03 | 2.872858e-04 | 256 | | LBFGS | 1 | 46 | 2.681374e+00 | 1.000000e+00 | 8.498584e-03 | 5.771001e-04 | 256 | | LBFGS | 1 | 47 | 2.681353e+00 | 1.000000e+00 | 2.832861e-03 | 3.160871e-04 | 256 | | LBFGS | 1 | 48 | 2.681334e+00 | 5.000000e-01 | 8.498584e-03 | 1.045502e-03 | 256 | | LBFGS | 1 | 49 | 2.681314e+00 | 1.000000e+00 | 7.878714e-04 | 1.505118e-03 | 256 | | LBFGS | 1 | 50 | 2.681306e+00 | 1.000000e+00 | 2.832861e-03 | 4.756894e-04 | 256 | | LBFGS | 1 | 51 | 2.681301e+00 | 1.000000e+00 | 1.133144e-02 | 3.664873e-04 | 256 | | LBFGS | 1 | 52 | 2.681288e+00 | 1.000000e+00 | 2.832861e-03 | 1.449821e-04 | 256 | | LBFGS | 1 | 53 | 2.681287e+00 | 2.500000e-01 | 1.699717e-02 | 2.357176e-04 | 256 | | LBFGS | 1 | 54 | 2.681282e+00 | 1.000000e+00 | 5.665722e-03 | 2.046663e-04 | 256 | | LBFGS | 1 | 55 | 2.681278e+00 | 1.000000e+00 | 2.832861e-03 | 2.546349e-04 | 256 | | LBFGS | 1 | 56 | 2.681276e+00 | 2.500000e-01 | 1.307940e-03 | 1.966786e-04 | 256 | | LBFGS | 1 | 57 | 2.681274e+00 | 5.000000e-01 | 1.416431e-02 | 1.005310e-04 | 256 | | LBFGS | 1 | 58 | 2.681271e+00 | 5.000000e-01 | 1.118892e-03 | 1.147324e-04 | 256 | | LBFGS | 1 | 59 | 2.681269e+00 | 1.000000e+00 | 2.832861e-03 | 1.332914e-04 | 256 | | LBFGS | 1 | 60 | 2.681268e+00 | 2.500000e-01 | 1.132045e-03 | 5.441369e-05 | 256 | |=================================================================================================================| ```

Estimate the epsilon-insensitive error for the test set using the updated model.

`UpdatedL = loss(UpdatedMdl,Xtest,Ytest,'LossFun','epsiloninsensitive')`
```UpdatedL = 1.8933 ```

The regression error decreases by a factor of about `0.08` after `resume` updates the regression model with more iterations.

## Version History

Introduced in R2018a

expand all