Solving equation with for loop is slow
2 views (last 30 days)
Show older comments
I have an equation (5th order Polynomial) and I have to solve it every time for different variables A,B and Coeff as written down. And the coefficient are quite alot (100000) I had no other way than using the for loop to do it but it is incredibely slow. Could anyone please give me a suggestion to make it faster or if there is another way to solve the equation faster.
This is my code:
tCounter = zeros(length(A),1);
for i = 1:length(A)
syms t
Check = (isnan(B(i,1))==1);
if Check ==1
tCounter(i) = NaN;
else
Equation = -(Coeff(21).*((B(i,2) + t*A(i,2)).^5) + (Coeff(20).*((B(i,2) + t*A(i,2)).^4)).*(B(i,1) + t*A(i,1)) + Coeff(19).*((B(i,2) + t*A(i,2)).^4) + (Coeff(18).*((B(i,2) + t*A(i,2)).^3)).*((B(i,1) + t*A(i,1)).^2) + (Coeff(17).*((B(i,2) + t*A(i,2)).^3)).*(B(i,1) + t*A(i,1)) + Coeff(16).*((B(i,2) + t*A(i,2)).^3) + (Coeff(15).*((B(i,2) + t*A(i,2)).^2)).*((B(i,1) + t*A(i,1)).^3) + (Coeff(14).*((B(i,2) + t*A(i,2)).^2)).*((B(i,1) + t*A(i,1)).^2) + (Coeff(13).*((B(i,2) + t*A(i,2)).^2)).*(B(i,1) + t*A(i,1)) + Coeff(12).*((B(i,2) + t*A(i,2)).^2) + (Coeff(11).*((B(i,2) + t*A(i,2)))).*((B(i,1) + t*A(i,1)).^4) + (Coeff(10).*(B(i,2) + t*A(i,2))).*((B(i,1) + t*A(i,1)).^3) + (Coeff(9).*(B(i,2) + t*A(i,2))).*((B(i,1) + t*A(i,1)).^2) + (Coeff(8).*(B(i,2) + t*A(i,2))).*((B(i,1) + t*A(i,1))) + (Coeff(7).*(B(i,2) + t*A(i,2))) + Coeff(6).*((B(i,1) + t*A(i,1)).^5) + Coeff(5).*((B(i,1) + t*A(i,1)).^4) + Coeff(4).*((B(i,1) + t*A(i,1)).^3) + Coeff(3).*((B(i,1) + t*A(i,1)).^2) + Coeff(2).*(B(i,1) + t*A(i,1)) + Coeff(1)) + Thickness - (B(i,3) + t*A(i,3));
t = solve(Equation,t);
t = double (t);
t(imag(t) ~= 0) = [];
t(t<0) = [];
t = min(t);
tCounter(i) = t;
end
end
Many thanks in advance
0 Comments
Accepted Answer
Walter Roberson
on 14 Oct 2013
solve() generically outside of the loop and then subs() or matlabFunction() to get code executed for each loop instance.
t = roots( [Coeff(6)*A(i, 1)^5+Coeff(11)*A(i, 1)^4*A(i, 2)+Coeff(15)*A(i, 1)^3*A(i, 2)^2+Coeff(18)*A(i, 1)^2*A(i, 2)^3+Coeff(20)*A(i, 1)*A(i, 2)^4+Coeff(21)*A(i, 2)^5,
(5*Coeff(6)*B(i, 1)+Coeff(11)*B(i, 2)+Coeff(5))*A(i, 1)^4+(2*(2*Coeff(11)*B(i, 1)+Coeff(15)*B(i, 2)+(1/2)*Coeff(10)))*A(i, 1)^3*A(i, 2)+(3*Coeff(15)*B(i, 1)+3*Coeff(18)*B(i, 2)+Coeff(14))*A(i, 1)^2*A(i, 2)^2+(2*Coeff(18)*B(i, 1)+4*Coeff(20)*B(i, 2)+Coeff(17))*A(i, 1)*A(i, 2)^3+(Coeff(20)*B(i, 1)+5*Coeff(21)*B(i, 2)+Coeff(19))*A(i, 2)^4,
(10*Coeff(6)*B(i, 1)^2+Coeff(15)*B(i, 2)^2+(4*Coeff(11)*B(i, 2)+4*Coeff(5))*B(i, 1)+Coeff(10)*B(i, 2)+Coeff(4))*A(i, 1)^3+(3*(2*Coeff(11)*B(i, 1)^2+Coeff(18)*B(i, 2)^2+(2*Coeff(15)*B(i, 2)+Coeff(10))*B(i, 1)+(2/3)*Coeff(14)*B(i, 2)+(1/3)*Coeff(9)))*A(i, 1)^2*A(i, 2)+(3*Coeff(15)*B(i, 1)^2+6*Coeff(20)*B(i, 2)^2+(6*Coeff(18)*B(i, 2)+2*Coeff(14))*B(i, 1)+3*Coeff(17)*B(i, 2)+Coeff(13))*A(i, 1)*A(i, 2)^2+(Coeff(18)*B(i, 1)^2+10*Coeff(21)*B(i, 2)^2+(4*Coeff(20)*B(i, 2)+Coeff(17))*B(i, 1)+4*Coeff(19)*B(i, 2)+Coeff(16))*A(i, 2)^3,
(10*Coeff(6)*B(i, 1)^3+Coeff(18)*B(i, 2)^3+(6*Coeff(11)*B(i, 2)+6*Coeff(5))*B(i, 1)^2+Coeff(14)*B(i, 2)^2+(3*Coeff(15)*B(i, 2)^2+3*Coeff(10)*B(i, 2)+3*Coeff(4))*B(i, 1)+Coeff(9)*B(i, 2)+Coeff(3))*A(i, 1)^2+(4*Coeff(11)*B(i, 1)^3+4*Coeff(20)*B(i, 2)^3+(6*Coeff(15)*B(i, 2)+3*Coeff(10))*B(i, 1)^2+3*Coeff(17)*B(i, 2)^2+(6*Coeff(18)*B(i, 2)^2+4*Coeff(14)*B(i, 2)+2*Coeff(9))*B(i, 1)+2*Coeff(13)*B(i, 2)+Coeff(8))*A(i, 1)*A(i, 2)+(Coeff(15)*B(i, 1)^3+10*Coeff(21)*B(i, 2)^3+(3*Coeff(18)*B(i, 2)+Coeff(14))*B(i, 1)^2+6*Coeff(19)*B(i, 2)^2+(6*Coeff(20)*B(i, 2)^2+3*Coeff(17)*B(i, 2)+Coeff(13))*B(i, 1)+3*Coeff(16)*B(i, 2)+Coeff(12))*A(i, 2)^2,
(5*Coeff(6)*A(i, 1)+Coeff(11)*A(i, 2))*B(i, 1)^4+(Coeff(20)*A(i, 1)+5*Coeff(21)*A(i, 2))*B(i, 2)^4+(4*Coeff(5)*A(i, 1)+Coeff(10)*A(i, 2)+(4*Coeff(11)*A(i, 1)+2*Coeff(15)*A(i, 2))*B(i, 2))*B(i, 1)^3+(Coeff(17)*A(i, 1)+4*Coeff(19)*A(i, 2))*B(i, 2)^3+((3*Coeff(15)*A(i, 1)+3*Coeff(18)*A(i, 2))*B(i, 2)^2+3*Coeff(4)*A(i, 1)+Coeff(9)*A(i, 2)+(3*Coeff(10)*A(i, 1)+2*Coeff(14)*A(i, 2))*B(i, 2))*B(i, 1)^2+(Coeff(13)*A(i, 1)+3*Coeff(16)*A(i, 2))*B(i, 2)^2+Coeff(2)*A(i, 1)+Coeff(7)*A(i, 2)+A(i, 3)+((2*Coeff(18)*A(i, 1)+4*Coeff(20)*A(i, 2))*B(i, 2)^3+(2*Coeff(14)*A(i, 1)+3*Coeff(17)*A(i, 2))*B(i, 2)^2+2*Coeff(3)*A(i, 1)+Coeff(8)*A(i, 2)+(2*Coeff(9)*A(i, 1)+2*Coeff(13)*A(i, 2))*B(i, 2))*B(i, 1)+(Coeff(8)*A(i, 1)+2*Coeff(12)*A(i, 2))*B(i, 2),
Coeff(6)*B(i, 1)^5+Coeff(21)*B(i, 2)^5+(Coeff(11)*B(i, 2)+Coeff(5))*B(i, 1)^4+Coeff(19)*B(i, 2)^4+(Coeff(15)*B(i, 2)^2+Coeff(10)*B(i, 2)+Coeff(4))*B(i, 1)^3+Coeff(16)*B(i, 2)^3+(Coeff(18)*B(i, 2)^3+Coeff(14)*B(i, 2)^2+Coeff(9)*B(i, 2)+Coeff(3))*B(i, 1)^2+Coeff(12)*B(i, 2)^2-Thickness+(Coeff(20)*B(i, 2)^4+Coeff(17)*B(i, 2)^3+Coeff(13)*B(i, 2)^2+Coeff(8)*B(i, 2)+Coeff(2))*B(i, 1)+Coeff(7)*B(i, 2)+B(i, 3)+Coeff(1) ] );
and then do the filtering like you had before.
More Answers (0)
See Also
Categories
Find more on Dates and Time in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!