High order equation Solving
1 view (last 30 days)
Show older comments
I am doing ray tracing and I have to make intersection between the ray and polynomial so I got the following equation and I have to solve it for t.
A(21).*(Y.^5) + (A(20).*(Y.^4)).*X + A(19).*(Y.^4) + (A(18).*(Y.^3)).*(X.^2) + (A(17).*(Y.^3)).*X + A(16).*(Y.^3) + (A(15).*(Y.^2)).*(X.^3) + (A(14).*(Y.^2)).*(X.^2) + (A(13).*(Y.^2)).*X + A(12).*(Y.^2) + (A(11).*(Y)).*(X.^4) + (A(10).*Y).*(X.^3) + (A(9).*Y).*(X.^2) + (A(8).*Y).*(X) + (A(7).*Y) + A(6).*(X.^5) + A(5).*(X.^4) + A(4).*(X.^3) + A(3).*(X.^2) + A(2).*X + A(1) - Z = 0;*
While:
X = (px +t*dx);
Y = (py +t*dy);
Z = (pz +t*dz);
so I want to get t in respect to the other variables. ( I have all the other variables but I don't know how to calculate it )
Please support Many thanks in advance
0 Comments
Accepted Answer
sixwwwwww
on 12 Oct 2013
Dear Yaman, Here is the solution of your problem in symbolic form:
syms X Y Z p x y z t dx dy dz
A = sym('A%d', [1 21]);
X = p * x + t * dx;
Y = p * y + t * dy;
Z = p * z + t * dz;
equation = A(21) * Y^5 + (A(20) * Y^4) * X + A(19)* Y^4 + (A(18) * Y^3) * X^2 + (A(17) * Y^3) * X + A(16) * Y^3 + (A(15) * Y^2) * X^3 + ...
(A(14) * Y^2) * X^2 + (A(13) * Y^2) * X + A(12) * Y^2 + (A(11) * Y) * X^4 + (A(10) * Y) * X^3 + (A(9) * Y) * X^2 + (A(8) * Y) *X + A(7) * Y +...
A(6) * X^5 + A(5) * X^4 + A(4) * X^3 + A(3) * X^2 + A(2) * X + A(1) - Z;
Solution = solve(equation == 0, t);
Now if you put your know values of A(1)...A(21) and p, x, y, z, dx, dy, dz using "subs" function in "equation" then use last statement
Solution = solve(equation == 0, t);
then you will get your desired solution for "t". For information about "subs" see http://www.mathworks.com/help/symbolic/subs.html . Good luck!
2 Comments
More Answers (0)
See Also
Categories
Find more on Linear Algebra in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!