Solve a Set of Equations with Constraints and Interchangeable Varaibles
3 views (last 30 days)
Show older comments
Hello, is there any way to solve the equations below using interchangeability algorithm (function of X in 4 dimensions-i,j,k,l)? I’m not a computer science guy and apparently interchangeability algorithm can solve the equations and render multiple solutions with the constraints that are within the equations (The Rs and Hs are known).
R_i-(X_l*X_j) * H_k=0;
R_j-(X_k*X_i) * H_l=0;
R_k-(X_j*X_l) * H_i=0;
R_l-(X_i*X_k) * H_j=0;
The (I ; j) pair and (k ; l) pair are interchangeable.
Each equation apparently is quadratic (I don’t understand this part about it, but the Xs correspond to each other).
I would really appreciate if someone can at least make a suggestion or give their opinion as to what approach can be used.
2 Comments
Adam Danz
on 23 Jun 2021
Edited: Adam Danz
on 24 Jun 2021
@MarshallSc, regarding your flag, "I am the creator of this post and I want to remove it as the question and the answers are wrong and irrelevant and might be misleading to members", the problem is, multiple volunteers have already invested considerable time into answering the existing question so removing it also removes their work. It may not answer the question you intended to ask but it does address the question you asked. If you have a better answer to this quesiton you could add it so that the thread is more valuable to the community.
This highlights the importance of investigating the question before investigating the answer. Often times the process of dissecting and clearly framing a question leads to the answer before the question is even asked. Unfortunately, it's common that the real problem, and therefore, the solution, is found at the end of a windy, loopy trail bounded by investigations in the wrong directions.
“If I had only one hour to save the world, I would spend fifty-five minutes defining the problem, and only five minutes finding the solution.”
-Albert Einstein
Answers (1)
John D'Errico
on 10 Jun 2021
I think you are worrying about some magic algorithm, when simple linear algebra will suffice. Yes. LINEAR algebra.
Each equation is of the same form
Ri = X_i*X_j*H_k
TAKE THE LOG. Then you have
log(R_i) - log(H_k) = log(X_i) + log(X_j)
So your equations are LINEAR in the log of the unknowns. Solve the linear system for the unknowns. Again, this is linear algebra.
You will find the linear system is singular, at least as you wrote the equations, so no solution will exist unless something rare happens with the constant terms. And if that does happen, then infinitely many solutions will eist.
8 Comments
Walter Roberson
on 11 Jun 2021
The equations divide by Li*Lj so for stability analysis, it is nice to know that the result is "about 2" instead of having to worry about covering many order of magnitudes. It means the code does not have to be as careful as might otherwise be the case.
However, beyond that, I do not think it helps much.
(My tracking number: T0098914 )
See Also
Categories
Find more on Mathematics and Optimization in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!