Solve Equation for w(t)

1 view (last 30 days)
Mario Braumüller
Mario Braumüller on 30 Jan 2021
Commented: Walter Roberson on 7 May 2021
I need to solve the following equation to w(t). I just need the real part solution. w(t) = .....
All other variables are later given in a table so I can calculate different solutions.
I´m not able to solve this in a m.file?
It would be great if someone can help me. please
Thanks a lot
  7 Comments
Rik
Rik on 28 Feb 2021
Deleted comments:
Hello, i tried it with the following code:
syms rho_w w(t) p_u d_0 D_0 l h_0 t kappa m_St m_w rho_L c_w A_Q v(t) h_d lambda zeta n
eqn = (rho_w / 2) * w(t)^2 + p_u == (rho_w / 2) * (d_0 / D_0)^4 * w(t)^2 + ((l - h_0) / (l - h_0 + (d_0 / D_0)^2 * w(t) * t))^kappa + (rho_w / (m_St + m_w - rho_w * (pi / 4) * d_0^2 * w(t) * t)) * (rho_w * (pi / 4) * d_0^2 * w(t)^2 - (rho_L / 2) * c_w * A_Q * v(t)^2) * (h_0 + h_d - (d_0 / D_0)^2 * w(t) * t) + (rho_w / 2) * (d_0 / D_0)^4 * w(t)^2 * (lambda * ((h_0 - (d_0 / D_0)^2 * w(t) * t) / D_0) + sum(zeta,i,1,n)) ;
solx = solve(eqn, w(t))
This equation is now to be solved for w (t), but under the condition that v (t) is known.
Rena Berman
Rena Berman on 6 May 2021
(Answers Dev) Restored edit

Sign in to comment.

Answers (1)

Walter Roberson
Walter Roberson on 31 Jan 2021
syms rho_w w(t) p_u d_0 D_0 l h_0 t kappa m_St m_w rho_L c_w A_Q v(t) h_d lambda zeta n
syms sum_of_zeta
eqn = (rho_w / 2) * w(t)^2 + p_u == (rho_w / 2) * (d_0 / D_0)^4 * w(t)^2 + ((l - h_0) / (l - h_0 + (d_0 / D_0)^2 * w(t) * t))^kappa + (rho_w / (m_St + m_w - rho_w * (pi / 4) * d_0^2 * w(t) * t)) * (rho_w * (pi / 4) * d_0^2 * w(t)^2 - (rho_L / 2) * c_w * A_Q * v(t)^2) * (h_0 + h_d - (d_0 / D_0)^2 * w(t) * t) + (rho_w / 2) * (d_0 / D_0)^4 * w(t)^2 * (lambda * ((h_0 - (d_0 / D_0)^2 * w(t) * t) / D_0) + sum_of_zeta) ;
syms W V
eqnW = subs(eqn, w(t), W)
eqnW = 
solw = solve(eqnW, W)
Warning: Unable to find explicit solution. For options, see help.
solw = Empty sym: 0-by-1
char(eqnW)
ans = 'p_u + (W^2*rho_w)/2 == (-(h_0 - l)/(l - h_0 + (W*d_0^2*t)/D_0^2))^kappa + (rho_w*((W^2*d_0^2*rho_w*pi)/4 - (A_Q*c_w*rho_L*v(t)^2)/2)*(h_0 + h_d - (W*d_0^2*t)/D_0^2))/(m_St + m_w - (W*d_0^2*rho_w*t*pi)/4) + (W^2*d_0^4*rho_w)/(2*D_0^4) + (W^2*d_0^4*rho_w*(sum_of_zeta + (lambda*(h_0 - (W*d_0^2*t)/D_0^2))/D_0))/(2*D_0^4)'
  5 Comments
James Tursa
James Tursa on 6 May 2021
"... always has an even number of real-valued roots ..."
should read
"... always has an even number of complex-valued roots ..."
Walter Roberson
Walter Roberson on 7 May 2021
James is correct, I mis-typed before.

Sign in to comment.

Categories

Find more on Loops and Conditional Statements in Help Center and File Exchange

Products


Release

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!