hopf bifurcation for brusselator
8 views (last 30 days)
Show older comments
Hello everyone!
I have a question about hopf bifurcation for a brusselator problem, how to
implement a code for that. For now my code that I have written looks like below:
a = 1;
b = 2;
x0 = [0 5];
tspan = [1,100];
Bruss = @(t,x) [1 - (b+1)*x(1) + a*x(1)^2*x(2); b*x(1) - a*x(1)^2*x(2)];
options = odeset('RelTol',1e-6,'AbsTol',1e-4);
[T,x] = ode45(Bruss,tspan,x0,options);
% x1 = linspace(0,100,5000);
x1 = x(:,1);
y1 = x(:,2);
% y1 = linspace(0,100,5000);
xnully = ((b+1).*x1-1)./(a.*x1.^2);
ynully = b./(a.*y1);
plot(x1,xnully,y1,ynully);
axis([0 4 0 4])
hold on
% plot(T,x(:,2),T,x(:,1))
% hold on
% plot(a,b/a,'r')
% [m,n] = size(x) ;
[x2,y2] = meshgrid(0:.2:4,0:.2:4);
U = 1-(b+1).*x2 + a.*y2.*x2.^2;
V = b.*x2 - a.*y2.*x2.^2;
L = sqrt(U.^2 + V.^2);
quiver(x2,y2,U./L,V./L,.5,'k')
hold on
plot(a,b/a,'r*')
1 Comment
Ana Sar
on 10 Feb 2021
Hello!
Have you found a solution for this problem? If the answer is yes, please please share it here.
Answers (0)
See Also
Categories
Find more on Assembly in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!