obtaining large numbers while using syms
    21 views (last 30 days)
  
       Show older comments
    
Hello, I have a matrix which vontains symbols:
kesi_eta=[1/sqrt(3)    1/sqrt(3)
          -1/sqrt(3)   1/sqrt(3)
          -1/sqrt(3)   -1/sqrt(3)
          1/sqrt(3)    -1/sqrt(3)];
Kij_new=0;
for i=1:4
    kesi=kesi_eta(i,1);
    eta=kesi_eta(i,2);
    B=(1/4).*[1+eta   0       -1-eta   0       -1+eta  0        1-eta   0
          0       1+kesi  0        1-kesi  0       -1+kesi  0       -1-kesi
          1+kesi  1+eta   1-kesi   -1-eta  -1+kesi -1+eta   -1-kesi 1-eta];
J=[Lx/2   0
   0      Ly/2];
Bhat=(1/(2*Lx*Ly)).*[Ly*(1+eta)  0            -Ly*(1+eta)  0           -Ly*(1-eta)   0            Ly*(1-eta)   0
                     0           Lx*(1+kesi)  0            Lx*(1-kesi) 0             -Lx*(1-kesi) 0            -Lx*(1+kesi)
                     Lx*(1+kesi) Ly*(1+eta)   Lx*(1-kesi)  -Ly*(1+eta) -Lx*(1-kesi)  -Ly*(1-eta)  -Lx*(1+kesi) Ly*(1-eta)];
D_red=[1/E -v/E    0;
       -v/E 1/E    0;
       0     0   1/G];
C=D_red^-1;
Kij=Bhat.'*C*Bhat*h*det(J);
    Kij1=Kij;
    Kij_old=Kij_new+Kij1;
    Kij_new=Kij_old;
end
and the out put gives me very large numbers without simplification.even when I use function simplify(), I face these numbers:
[                                  (72115234146317045769238718114163*E*h*(9*v - 17))/(2596148429267413814265248164610048*(v^2 - 1)),                                           -(324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)),     (3*E*h*(13521606402434444180830355908725*v + 10516804979671237742249216795996))/(324518553658426726783156020576256*(v^2 - 1)),                               -(324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)),                                   -(4507202134144814726943451969575*E*h*(9*v - 17))/(324518553658426726783156020576256*(v^2 - 1)),                                            (324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)), -(3*E*h*(216345702438951137307716154342489*v - 120192056910528423132922512324889))/(2596148429267413814265248164610048*(v^2 - 1)),                                (324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1))]
[                                             -(324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)),                                (72115234146317045769238718114163*E*h*(2*v - 11))/(1298074214633706907132624082305024*(v^2 - 1)),                                  (324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)),  -(3*E*h*(24038411382105681923079572704721*v + 30048014227632094800241850930179))/(649037107316853453566312041152512*(v^2 - 1)),                                              (324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)),                                 -(4507202134144814726943451969575*E*h*(2*v - 11))/(162259276829213363391578010288128*(v^2 - 1)),                                 -(324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)), (3*E*h*(24038411382105678543698410504400*v + 192307291056845458764017743838089))/(1298074214633706907132624082305024*(v^2 - 1))]
[     (3*E*h*(13521606402434444180830355908725*v + 10516804979671237742249216795996))/(324518553658426726783156020576256*(v^2 - 1)),                                (324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)),                                  (72115234146317045769238718114163*E*h*(9*v - 17))/(2596148429267413814265248164610048*(v^2 - 1)),                                            (324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)), -(3*E*h*(216345702438951137307716154342489*v - 120192056910528423132922512324889))/(2596148429267413814265248164610048*(v^2 - 1)),                               -(324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)),                                   -(4507202134144814726943451969575*E*h*(9*v - 17))/(324518553658426726783156020576256*(v^2 - 1)),                                           -(324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1))]
[                                 -(324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)),  -(3*E*h*(24038411382105681923079572704721*v + 30048014227632094800241850930179))/(649037107316853453566312041152512*(v^2 - 1)),                                              (324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)),                                (72115234146317045769238718114163*E*h*(2*v - 11))/(1298074214633706907132624082305024*(v^2 - 1)),                                  (324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)), (3*E*h*(24038411382105678543698410504400*v + 192307291056845458764017743838089))/(1298074214633706907132624082305024*(v^2 - 1)),                                             -(324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)),                                 -(4507202134144814726943451969575*E*h*(2*v - 11))/(162259276829213363391578010288128*(v^2 - 1))]
[                                   -(4507202134144814726943451969575*E*h*(9*v - 17))/(324518553658426726783156020576256*(v^2 - 1)),                                            (324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)), -(3*E*h*(216345702438951137307716154342489*v - 120192056910528423132922512324889))/(2596148429267413814265248164610048*(v^2 - 1)),                                (324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)),                                  (72115234146317045769238718114163*E*h*(9*v - 17))/(2596148429267413814265248164610048*(v^2 - 1)),                                           -(324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)),     (3*E*h*(13521606402434444180830355908725*v + 10516804979671237742249216795996))/(324518553658426726783156020576256*(v^2 - 1)),                               -(324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1))]
[                                              (324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)),                                 -(4507202134144814726943451969575*E*h*(2*v - 11))/(162259276829213363391578010288128*(v^2 - 1)),                                 -(324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)), (3*E*h*(24038411382105678543698410504400*v + 192307291056845458764017743838089))/(1298074214633706907132624082305024*(v^2 - 1)),                                             -(324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)),                                (72115234146317045769238718114163*E*h*(2*v - 11))/(1298074214633706907132624082305024*(v^2 - 1)),                                  (324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)),  -(3*E*h*(24038411382105681923079572704721*v + 30048014227632094800241850930179))/(649037107316853453566312041152512*(v^2 - 1))]
[ -(3*E*h*(216345702438951137307716154342489*v - 120192056910528423132922512324889))/(2596148429267413814265248164610048*(v^2 - 1)),                               -(324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)),                                   -(4507202134144814726943451969575*E*h*(9*v - 17))/(324518553658426726783156020576256*(v^2 - 1)),                                           -(324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)),     (3*E*h*(13521606402434444180830355908725*v + 10516804979671237742249216795996))/(324518553658426726783156020576256*(v^2 - 1)),                                (324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)),                                  (72115234146317045769238718114163*E*h*(9*v - 17))/(2596148429267413814265248164610048*(v^2 - 1)),                                            (324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1))]
[                                  (324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)), (3*E*h*(24038411382105678543698410504400*v + 192307291056845458764017743838089))/(1298074214633706907132624082305024*(v^2 - 1)),                                             -(324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)),                                 -(4507202134144814726943451969575*E*h*(2*v - 11))/(162259276829213363391578010288128*(v^2 - 1)),                                 -(324518553658426690754359001612289*E*h*(3*v - 1))/(2596148429267413814265248164610048*(v^2 - 1)),  -(3*E*h*(24038411382105681923079572704721*v + 30048014227632094800241850930179))/(649037107316853453566312041152512*(v^2 - 1)),                                              (324518553658426690754359001612289*E*h)/(2596148429267413814265248164610048*(v - 1)),                                (72115234146317045769238718114163*E*h*(2*v - 11))/(1298074214633706907132624082305024*(v^2 - 1))]
Can someone pleaaase help me? I have even used vpa() and still the problem has not been fixed
thank you
1 Comment
  Walter Roberson
      
      
 on 31 Dec 2020
				Sqrt = @(x) sqrt(sym(x)) ;
kesi_eta=[1/Sqrt(3)    1/Sqrt(3)
        -1/Sqrt(3)   1/Sqrt(3)
        -1/Sqrt(3)   -1/Sqrt(3)
        1/Sqrt(3)    -1/Sqrt(3)];
Answers (2)
  Walter Roberson
      
      
 on 31 Dec 2020
        %variables user did not define. Give them a definite value.
h = sym(5/3); E = sym(10000); v = sym(123); Lx = sym(28); Ly = sym(18); G = sym(42); 
%proceed
Sqrt = @(x) sqrt(sym(x)) ;
kesi_eta=[1/Sqrt(3)    1/Sqrt(3)
        -1/Sqrt(3)   1/Sqrt(3)
        -1/Sqrt(3)   -1/Sqrt(3)
        1/Sqrt(3)    -1/Sqrt(3)];
Kij_new=0;
for i=1:4
    kesi=kesi_eta(i,1);
    eta=kesi_eta(i,2);
    B=(1/4).*[1+eta   0       -1-eta   0       -1+eta  0        1-eta   0
          0       1+kesi  0        1-kesi  0       -1+kesi  0       -1-kesi
          1+kesi  1+eta   1-kesi   -1-eta  -1+kesi -1+eta   -1-kesi 1-eta];
J=[Lx/2   0
   0      Ly/2];
Bhat=(1/(2*Lx*Ly)).*[Ly*(1+eta)  0            -Ly*(1+eta)  0           -Ly*(1-eta)   0            Ly*(1-eta)   0
                     0           Lx*(1+kesi)  0            Lx*(1-kesi) 0             -Lx*(1-kesi) 0            -Lx*(1+kesi)
                     Lx*(1+kesi) Ly*(1+eta)   Lx*(1-kesi)  -Ly*(1+eta) -Lx*(1-kesi)  -Ly*(1-eta)  -Lx*(1+kesi) Ly*(1-eta)];
D_red=[1/E -v/E    0;
       -v/E 1/E    0;
       0     0   1/G];
C=D_red^-1;
Kij=Bhat.'*C*Bhat*h*det(J);
    Kij1=Kij;
    Kij_old=Kij_new+Kij1;
    Kij_new=Kij_old;
end
simplify(Kij_new)
0 Comments
  Ameer Hamza
      
      
 on 31 Dec 2020
        Specify the number of digits in vpa() to
vpa(x, 4)
2 Comments
  Ameer Hamza
      
      
 on 31 Dec 2020
				What type of simplification do you want? The polynomials in numerators or denominators cannot be further simplified.
See Also
Categories
				Find more on Calculus in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


