3d Plot of a function
1 view (last 30 days)
Show older comments
student_md
on 21 Oct 2020
Commented: Walter Roberson
on 26 Oct 2020
Dear there,
I have a piecewise function u(x,t) as following code. I want to plot u(x,t) on the region (x,t) ∈ [-1,1]x[-2,2] by using the contour surface plot as the link
Could you help me please?
Thanks
clc;
clear all;
syms x t
t1 = exp(x);
t21 = -5 .* t;
t3 = exp(t21);
t5 = exp((1 + t21));
t4 = ((0 <= t & t <= 1/2) .* 1.73205);
t5 = ((0 <= t & t <= 1/2) .* (30.9839 .* t - 7.74597));
t6 = ((1/2 <= t & t <= 1) .* 1.73205);
t7 = ((1/2 <= t & t <= 1) .* (30.9839 .* t - 23.2379));
t6 = (1 + t5).^2;
t2 = 1 ./ t6;
t7 = (1 + t3).^2;
t3 = 1 ./ t7;
t8 = -0.00399646;
t9 = 0.00922094;
t10 = 0.0415432;
t11 = 0.0603743;
t12 = 0.177671;
t13 = ((0 <= x & x <= 1/2) .* 1.73205);
t14 = ((0 <= x & x <= 1/2) .* (30.9839 .* x - 7.74597));
t15 = ((1/2 <= x & x <= 1) .* 1.73205);
t16 = ((1/2 <= x & x <= 1) .* (30.9839 .* x - 23.2379));
t8 = (1 + t1).^2;
t1 = 1 ./ t8;
u = -1/4 + (-0.00243052 .* t13 - 0.000809061 .* t14 - 0.00195593 .* t16 - 0.0152378 .* t15) .* t4 + (-0.00043359 .* t13 - 0.000146113 .* t14 - 0.000477063 .* t16 - 0.00319022 .* t15) .* t5 + (-0.00276115 .* t13 - 0.000933166 .* t14 - 0.00314361 .* t16 - 0.0207985 .* t15) .* t6 + t7 .* (0.000172747 .* t13 + 0.0013619 .* t15 + 0.00021141 .* t16 + 5.86775e-05 .* t14) + x .* (t10 .* t4 + t11 .* t6 + t5 .* t9 + t7 .* t8 + t12 + t2 - t3) + t3 + t1;
0 Comments
Accepted Answer
Walter Roberson
on 21 Oct 2020
create a meshgrid of x and t values, X and T. Then
Z = double(subs(u, {x, t}, {X, T})) ;
surfc(X, Y, Z)
5 Comments
Walter Roberson
on 26 Oct 2020
syms x t
t1 = exp(x);
t21 = -5 .* t;
t3 = exp(t21);
t5 = exp((1 + t21));
t4 = ((0 <= t & t <= 1/2) .* 1.73205);
t5 = ((0 <= t & t <= 1/2) .* (30.9839 .* t - 7.74597));
t6 = ((1/2 <= t & t <= 1) .* 1.73205);
t7 = ((1/2 <= t & t <= 1) .* (30.9839 .* t - 23.2379));
t6 = (1 + t5).^2;
t2 = 1 ./ t6;
t7 = (1 + t3).^2;
t3 = 1 ./ t7;
t8 = -0.00399646;
t9 = 0.00922094;
t10 = 0.0415432;
t11 = 0.0603743;
t12 = 0.177671;
t13 = ((0 <= x & x <= 1/2) .* 1.73205);
t14 = ((0 <= x & x <= 1/2) .* (30.9839 .* x - 7.74597));
t15 = ((1/2 <= x & x <= 1) .* 1.73205);
t16 = ((1/2 <= x & x <= 1) .* (30.9839 .* x - 23.2379));
t8 = (1 + t1).^2;
t1 = 1 ./ t8;
u = -1/4 + (-0.00243052 .* t13 - 0.000809061 .* t14 - 0.00195593 .* t16 - 0.0152378 .* t15) .* t4 + (-0.00043359 .* t13 - 0.000146113 .* t14 - 0.000477063 .* t16 - 0.00319022 .* t15) .* t5 + (-0.00276115 .* t13 - 0.000933166 .* t14 - 0.00314361 .* t16 - 0.0207985 .* t15) .* t6 + t7 .* (0.000172747 .* t13 + 0.0013619 .* t15 + 0.00021141 .* t16 + 5.86775e-05 .* t14) + x .* (t10 .* t4 + t11 .* t6 + t5 .* t9 + t7 .* t8 + t12 + t2 - t3) + t3 + t1;
U = matlabFunction(u);
xvec = 0:0.1:1;
tvec = 0:0.1:2;
[X,T] = meshgrid(xvec, tvec);
Z = U(X,T);
surf(X, T, Z)
More Answers (0)
See Also
Categories
Find more on Assumptions in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!