hi I am trying to calculate the 4th root of the function f(x)=3x4+7x3−4x2−10x+15 using newtons method and a for - loop
13 views (last 30 days)
Show older comments
% EMTH171
% script using newtons method
clear
clc
close all
% function
f = @(x) 3*x.^4 + 7*x.^3 - 4*x.^2 - 10*x + 1/5;
% derivative
d = @(x) 12*x.^3 + 21*x.^2 - 8*x - 10;
% test value
x = -0.5;
N = 100;
for ii =1 : N
x = x - f(x)/d(x);
end
z = nArray(4,1);
disp(z);
3 Comments
David Hill
on 30 Aug 2020
Edited: David Hill
on 30 Aug 2020
If you graph it, you can see where the 4 roots are approximately.
f = @(x) 3*x.^4 + 7*x.^3 - 4*x.^2 - 10*x + 1/5;
x=-2.4:.001:1.3;
plot(x,f(x));
grid on;
David Hill
on 30 Aug 2020
I think you just need to pick your test value closer to the root you are trying to find.
Answers (1)
Rafael Hernandez-Walls
on 30 Aug 2020
clear
clc
close all
% function
f = @(x) 3*x.^4 + 7*x.^3 - 4*x.^2 - 10*x + 1/5;
% derivative
df = @(x) 12*x.^3 + 21*x.^2 - 8*x - 10;
%first graphic
x=-2.4:.001:1.3;
plot(x,f(x));
grid on;
% test value; click with mouse near x=1
[x y]=ginput(1);
%iterations newton method
N = 100;
for ii =1 : N
x = x - f(x)/df(x);
end
disp('Solution:')
x
0 Comments
See Also
Categories
Find more on Loops and Conditional Statements in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!