How to integrate with 3 variables?

1 view (last 30 days)
ylcnt
ylcnt on 21 Oct 2017
Answered: Walter Roberson on 24 Oct 2017
Hi,
I have to take the integration of the complex function. When i run, it doesn't give any result. Could anybody please help me to achieve it? And i need a general view to calculate integration of complex functions. Thanks in advance.
Here is my code :
function Fig1_pc_
clc
global z; global kppx; global kppy; global u;
alphas=0.03;
N=3;
lambda=1.55e-6;
k=2*pi/lambda;
w=-3;
eta=1e-3;
vsc=1e-6;
eps=(vsc^3)/(eta^4);
XT=1e-4;
L=50;
A_T=1.863e-2; A_S=1.9e-4; A_TS=9.41e-3;
mux=1; muy=2;
j=1;
I0L1=0;
for SNRx=0:2:20
SNR=10^(SNRx/10);
SNRn(j)=SNRx;
for l1=1:1:N
alphasl1=alphas/sqrt(l1);
alpha_l1=1/(2*k*alphasl1*alphasl1);
A_l1=(((-1)^(l1-1))*factorial(N)/(factorial(l1)*factorial(N-l1)*N));
for l2=1:1:N
alphasl2=alphas/sqrt(l2);
alpha_l2=1/(2*k*alphasl2*alphasl2);
A_l2=(((-1)^(l2-1))*factorial(N)/(factorial(l2)*factorial(N-l2)*N));
for ld1=1:1:N
alphasld1=alphas/sqrt(ld1);
alpha_ld1=1/(2*k*alphasld1*alphasld1);
A_ld1=(((-1)^(ld1-1))*factorial(N)/(factorial(ld1)*factorial(N-ld1)*N));
for ld2=1:1:N
alphasld2=alphas/sqrt(ld2);
alpha_ld2=1/(2*k*alphasld2*alphasld2);
A_ld2=(((-1)^(ld2-1))*factorial(N)/(factorial(ld2)*factorial(N-ld2)*N));
D2=A_ld1*A_ld2*(1/(0.5+alpha_ld1*1i*L))*(1/(0.5+alpha_ld2*1i*L))
D2A=A_ld1*A_ld2*(1/(0.5+alpha_ld1*1i*L))*(1/(0.5-alpha_ld2*1i*L))
end
end
NR=@(z,kppx,kppy) ((-(A_l1*A_l2*(1/(0.5+alpha_l1*1i*L))*(1/(0.5+alpha_l2*1i*L))*exp(-0.5i*(L-z).*(kppx.*kppx+kppy.*kppy).*((0.5+alpha_l1*1i*z)/(0.5+alpha_l1*1i*L)+(0.5+alpha_l2*1i*z)/(0.5+alpha_l2*1i*L))))/D2+...
(A_l1*A_l2*(1/(0.5+alpha_l1*1i*L))*(1/(0.5-alpha_l2*1i*L))*exp(-0.5i*(L-z).*(kppx.*kppx+kppy.*kppy).*((0.5+alpha_l1*1i*z)/(0.5+alpha_l1*1i*L)-(0.5-alpha_l2*1i*z)/(0.5-alpha_l2*1i*L))))/D2A).*...
(0.388*(1e-8)*mux*muy*XT*(eps^(-1/3))*(w^(-2))*((mux*mux*kppx.*kppx+muy*muy*kppy.*kppy).^(-11/6)).*...
(1+2.35*(eta^(2/3))*((mux*mux*kppx.*kppx+muy*muy*kppy.*kppy).^(1/3))).*...
(w*w*exp(-A_T*(8.284*(eta^(4/3))*((mux*mux*kppx.*kppx+muy*muy*kppy.*kppy).^(2/3))))+...
exp(-A_S*(8.284*(eta^(4/3))*((mux*mux*kppx.*kppx+muy*muy*kppy.*kppy).^(2/3))))-...
2*w*exp(-A_TS*(8.284*(eta^(4/3))*((mux*mux*kppx.*kppx+muy*muy*kppy.*kppy).^(2/3)))))));
m2=4*pi*real(integral3(NR1,0,L,0,inf,0,inf))
BERx = @(u) ((0.5./(sqrt(m2)*u*sqrt(2*pi))).*exp(-((log(u)+0.5*m2).^2)/(2*m2)).*erfc(SNR*u/sqrt(8)));
BER1=I0L1+integral(BERx,0,inf);
end
end
trns1(j)=BER1
j=j+1;
end
hold on
plot(SNRn,trns1,'--k','LineWidth',2);
hold off
xlabel( '\it\varsigma\rm','FontSize',24,'FontSize',24,'FontName','Times New Roman'); set(gca,'FontSize',24,'FontName','Times New Roman');
ylabel('Transmittance, \tau','FontSize',24,'FontName','Times New Roman');set(gca,'FontSize',24,'FontName','Times New Roman');
  2 Comments
Walter Roberson
Walter Roberson on 21 Oct 2017
You define a function handle NR which you do not use, but you apply integral3 to NR1 which you have not defined
ylcnt
ylcnt on 22 Oct 2017
There is a typo error. The above question is valid when NR is used.

Sign in to comment.

Answers (1)

Walter Roberson
Walter Roberson on 24 Oct 2017
If you have the symbolic toolbox, then you can reduce NR by one variable by integrating symbolically from Z = 0 to L.
Unfortunately, the real part of the resulting function goes to infinity as either kppx or kppy go to 0, making the fine details near 0 to be quite important. The adaptive numeric integral routines take a long long time. It is a fairly messy complex function.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!