issue with solving system of odes in matlab
1 view (last 30 days)
Show older comments
Wajahat
on 5 Oct 2017
Commented: Walter Roberson
on 24 Jan 2018
syms l g t A omg k
syms f1(x) f2(x)
S = dsolve(diff(f1) == l*f1 + sqrt(g)*A*exp(i*omg*t-i*k*x)*f2, diff(f2) == -sqrt(g)*A*exp(-i*omg*t+i*k*x)*f1 -l*f2)
S.f1
S.f2
matlab shows error when i solve the above mentioned ode in matlab, is there anyone who can guide me to remove the error.
0 Comments
Accepted Answer
Walter Roberson
on 5 Oct 2017
Edited: Walter Roberson
on 24 Jan 2018
MATLAB is not powerful enough to solve that analytically. Maple says that the solution is
f1(x) = -(1/2)*exp(1i*omg*t)*(C2*(1i*k-(-k^2-4*A^2*g+(4i)*k*l+4*l^2)^(1/2)+2*l)*exp((1/2)*(1i*k-(-k^2-4*A^2*g+(4i)*k*l+4*l^2)^(1/2))*x)+C1*exp((1/2)*(1i*k+(-k^2-4*A^2*g+(4i)*k*l+4*l^2)^(1/2))*x)*(1i*k+(-k^2-4*A^2*g+(4i)*k*l+4*l^2)^(1/2)+2*l))/(g^(1/2)*exp(i*k*x)*A)
f2(x) = C1*exp((1/2)*(1i*k+(-k^2-4*A^2*g+(4*1i)*k*l+4*l^2)^(1/2))*x)+C2*exp((1/2)*(1i*k-(-k^2-4*A^2*g+(4*1i)*k*l+4*l^2)^(1/2))*x)
Here, C1 and C2 are arbitrary constants of integration that depend upon the boundary conditions.
2 Comments
Walter Roberson
on 24 Jan 2018
simplify( dsolve([diff(f1(x), x) = l*f1(x)+A*g^(1/2)*exp(-I*k*x+I*omg*t)*f2(x), diff(f2(x), x) = -l*f2(x)-A*g^(1/2)*exp(I*k*x-I*omg*t)*f1(x)]), size)
This is Maple code, not MATLAB code.
More Answers (0)
See Also
Categories
Find more on Symbolic Math Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!