How can i evaluate my network performance as i have trained my model?
10 views (last 30 days)
Show older comments
Machine Learning Enthusiast
on 18 Feb 2017
Edited: Machine Learning Enthusiast
on 20 Feb 2017
I have trained my model with 100% accuracy,but i want to evaluate my trained work from test data set or unseen data.what should i add in my code for testing purpose? i-e to test validation data and test data
p = u; %inputs
t = f; %targets
[pn,ps] = mapminmax(p);
[tn,ts] = mapminmax(t);
%net = newff(p,t,10,10{},'trainlm');
net=newff(minmax(pn),[30,25,16],{'tansig','tansig','purelin'},'trainscg');
%net = init(net);
% net.IW{1,1}=wts0;
% net.b{1}=bias0;
net.trainParam.show =2;
net.trainParam.epochs =5000;
net.trainParam.goal =1e-7;
%net.trainParam.mc=0.95;
net.trainParam.lr=0.2;
[net,tr] = train(net,pn,tn);
ANN = sim(net,pn);
output1= mapminmax('reverse',ANN,ts);
wts1=net.IW{1,1};
bias1=net.b{1};
0 Comments
Accepted Answer
Walter Roberson
on 18 Feb 2017
7 Comments
Walter Roberson
on 18 Feb 2017
The code for that example does not create a network named "net". Are you trying to apply that to deepnet just before
% Train the deep network on the wine data.
?
Machine Learning Enthusiast
on 20 Feb 2017
Edited: Machine Learning Enthusiast
on 20 Feb 2017
More Answers (0)
See Also
Categories
Find more on Deep Learning Toolbox in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!