how can solve a numerical integral?
8 views (last 30 days)
Show older comments
I try to solve a numerical fourth order Integral. But it has taken a lot of time without any solution or even warning. Could you please help me to find it's problem. My code is
clc
clear all
close all
syms r R b r1 r2 r3 r4 r5 r6 z z1 z2 z3 z4 z5 z6
%syms r R b r1 r2 z z1 z2
hc=197.326;
alphas=1.54;
a=25.13;
l=-8/3;
s=1;
e=0.5;
M=313;
b=0.603;
f1=(1./pi.*b.^2).^(3./4).*(exp((-1./b.^2).*(r.^2+(s./2).^2-r.*s.*cos(z))));
f2=(1./pi.*b.^2)^(3./4).*(exp((-1./b.^2).*(r.^2+(s./2).^2+r.*s.*cos(z))));
k=(int(int(f1.*f2,'r',0,inf ),'z',0,pi));
N=(1+e.^2+2.*e.*k).^(1./2);
fl_1(r1)=(1./pi.*b.^2).^(3./4).*(exp((-1./b.^2).*((r1).^2+(s./2).^2-(r1).*s.*cos(z1))));
fl_2(r2)=(1./pi.*b.^2).^(3./4).*(exp((-1./b.^2).*((r2).^2+(s./2).^2-(r2).*s.*cos(z2))));
fl_3(r3)=(1./pi.*b.^2).^(3./4).*(exp((-1./b.^2).*((r3).^2+(s./2).^2-(r3).*s.*cos(z3))));
fl_4(r4)=(1./pi.*b.^2).^(3./4).*(exp((-1./b.^2).*((r4).^2+(s./2).^2-(r4).*s.*cos(z4))));
fl_5(r5)=(1./pi.*b.^2).^(3./4).*(exp((-1./b.^2).*((r5).^2+(s./2).^2-(r5).*s.*cos(z5))));
fl_6(r6)=(1./pi.*b.^2).^(3./4).*(exp((-1./b.^2).*((r6).^2+(s./2).^2-(r6).*s.*cos(z6))));
fR_1(r1)=(1./pi.*b.^2).^(3./4).*(exp((-1./b.^2).*((r1).^2+(s./2).^2+(r1).*s.*cos(z1))));
fR_2(r2)=(1./pi.*b.^2).^(3./4).*(exp((-1./b.^2).*((r2).^2+(s./2).^2+(r2).*s.*cos(z2))));
fR_3(r3)=(1./pi.*b.^2).^(3./4).*(exp((-1./b.^2).*((r3).^2+(s./2).^2+(r3).*s.*cos(z3))));
fR_4(r4)=(1./pi.*b.^2).^(3./4).*(exp((-1./b.^2).*((r4).^2+(s./2).^2+(r4).*s.*cos(z4))));
fR_5(r5)=(1./pi.*b.^2).^(3./4).*(exp((-1./b.^2).*((r5).^2+(s./2).^2+(r5).*s.*cos(z5))));
fR_6(r6)=(1./pi.*b.^2).^(3./4).*(exp((-1./b.^2).*((r6).^2+(s./2).^2+(r6).*s.*cos(z6))));
uL_1(r1)=(fl_1(r1)+e.*fR_1(r1))./N;
uL_2(r2)=(fl_2(r2)+e.*fR_2(r2))./N;
uL_3(r3)=(fl_3(r3)+e.*fR_3(r3))./N;
uR_4(r4)=(fR_4(r4)+e.*fl_4(r4))./N;
uR_5(r5)=(fR_5(r5)+e.*fl_5(r5))./N;
uR_6(r6)=(fR_6(r6)+e.*fl_6(r6))./N;
g1=uL_1(r1).*uL_2(r2).*(1./(r1-r2)).*uL_1(r1).*uL_2(r2).*(r1).^2.*(r2).^2.*sin(z1).*sin(z2);
g2= matlabFunction(g1);
G_11= integral2(@(r1,r2)arrayfun(@(r1,r2)integral2(@(z1,z2)(g2(r1,r2,z1,z2)),0,pi,0,pi),r1,r2),1,2,@(r1)r1,2);
G_12= integral2(@(r1,r2)arrayfun(@(r1,r2)integral2(@(z1,z2)(g2(r1,r2,z1,z2)),0,pi,0,pi),r1,r2),1,2,1,@(r1)r1);
G_1=G_11+G_12;
G_2=3.*(l./4).*(hc).*(alphas).*(2.*pi).^2.*(G_1);
g4=uR_4(r4).*uR_6(r6).*(1./(r4-r6)).*uR_4(r4).*uR_6(r6).*(r4).^2.*(r6).^2.*sin(z4).*sin(z6);
g6= matlabFunction(g4);
G_44= integral2(@(r4,r6)arrayfun(@(r4,r6)integral2(@(z4,z6)(g6(r4,r6,z4,z6)),0,pi,0,pi),r4,r6),1,2,@(r4)r4,2);
G_46= integral2(@(r4,r6)arrayfun(@(r4,r6)integral2(@(z4,z6)(g6(r4,r6,z4,z6)),0,pi,0,pi),r4,r6),1,2,1,@(r4)r4);
G_4=G_44+G_46;
G_6=3.*(l./4).*(hc).*(alphas).*(2.*pi).^2.*(G_4);
g3=uL_3(r3).*uR_5(r5).*(1./(r3-r5)).*uL_3(r3).*uR_5(r5).*(r3).^2.*(r5).^2.*sin(z3).*sin(z5);
g5= matlabFunction(g3);
G_33= integral2(@(r3,r5)arrayfun(@(r3,r5)integral2(@(z3,z5)(g5(r3,r5,z3,z5)),0,pi,0,pi),r3,r5),1,2,@(r3)r3,2);
G_35= integral2(@(r3,r5)arrayfun(@(r3,r5)integral2(@(z3,z5)(g5(r3,r5,z3,z5)),0,pi,0,pi),r3,r5),1,2,1,@(r3)r3);
G_3=G_33+G_35;
G_5=3.*(l./4).*(hc).*(alphas).*(2.*pi).^2.*(G_3);
V_g=G_2+G_6+G_5
1 Comment
Walter Roberson
on 3 Sep 2016
Is it correct that G_11 is
integral of g1, z1 = 0 .. Pi, z2 = 0 .. Pi, r2 = r1 .. 2, r1 = 1 .. 2)
?
Maple is telling me that the numerator of that is undefined.
Answers (0)
See Also
Categories
Find more on Calculus in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!