MATLAB has encountered an internal problem and needs to close

1 view (last 30 days)
It always happens when I run a certain mex file.
This is my mex <file:thanks>
//
// C++/Eigen reimplementatino of features_omp_8x8_1.m
//
#include <Eigen/Core>
#include <Eigen/Dense>
#include <Eigen/Eigen>
#include <iostream>
#include <numeric>
#include <time.h>
#include <assert.h>
#include "mex.h"
#include "omp_eigen.h"
using namespace std;
using namespace Eigen;
const float eps=1e-6;
inline void normalize(MatrixXf& hist, int norm, float threshold)
{
switch(norm)
{
case 0: break;
case 1:
for(int i=0; i<hist.rows(); i++)
hist.row(i) /= max( hist.row(i).array().abs().sum(), threshold );
break;
case 2:
for(int i=0; i<hist.rows(); i++)
hist.row(i) /= max( hist.row(i).norm(), threshold );
break;
case 3:
for(int i=0; i<hist.rows(); i++)
hist.row(i) /= max( pow( hist.row(i).array().abs().pow(3).sum() , 1/3 ), threshold );
break;
default:
cout << "Error: unknown normalization" << endl;
}
//hist.rowwise().normalize();
return;
}
inline void copy_float_to_double(double* dst, float* src, int n)
{
float* x=src;
double* y=dst;
for(int i=0; i<n; i++,x++,y++)
*y=(double)(*x);
return;
}
inline void copy_double_to_float(float* dst, double* src, int n)
{
double* x=src;
float* y=dst;
for(int i=0; i<n; i++,x++,y++)
*y=(float)(*x);
return;
}
inline void padarray(MatrixXf& im, int im_h, int im_w, int im_channel, int pad_y, int pad_x)
{
// replace im with im_pad
assert(pad_y>=0); assert(pad_x>=0);
int im_h_pad=im_h+pad_y*2;
int im_w_pad=im_w+pad_y*2;
MatrixXf im_pad(im_h_pad,im_w_pad*im_channel);
for(int c=0; c<im_channel; c++)
{
im_pad.block(pad_y,pad_x+im_w_pad*c,im_h,im_w)=im.block(0,im_w*c,im_h,im_w);
// replicate boundary
im_pad.block(0,0+im_w_pad*c,pad_y,im_w_pad).rowwise() = im_pad.block(pad_y,im_w_pad*c,1,im_w_pad).row(0);
im_pad.block(im_h_pad-1-pad_y+1,0+im_w_pad*c,pad_y,im_w_pad).rowwise() = im_pad.block(im_h_pad-1-pad_y,im_w_pad*c,1,im_w_pad).row(0);
im_pad.block(0,0+im_w_pad*c,im_h_pad,pad_x).colwise() = im_pad.block(0,pad_x+im_w_pad*c,im_h_pad,1).col(0);
im_pad.block(0,im_w_pad-1-pad_x+1+im_w_pad*c,im_h_pad,pad_x).colwise() = im_pad.block(0,im_w_pad-1-pad_x+im_w_pad*c,im_h_pad,1).col(0);
}
// replace im with im_pad
im=im_pad;
return;
}
inline void im2col(MatrixXf& X, const MatrixXf& im, int block_y, int block_x)
{
int im_h=im.rows();
int im_w=im.cols();
int nf=block_y*block_x;
int np=(im_h-block_y+1)*(im_w-block_x+1);
if (X.rows()!=nf || X.cols()!=np)
X.resize(nf,np);
for(int dy=0; dy<block_y; dy++)
for(int dx=0; dx<block_x; dx++)
{
int inc=dy+dx*block_y;
MatrixXf im_block=im.block(dy,dx,im_h-block_y+1,im_w-block_x+1);
X.row(inc)= Map<MatrixXf>( im_block.data(), 1, np );
}
return;
}
inline void im2col_multi(MatrixXf& X, const MatrixXf& im, int block_y, int block_x, int im_channel)
{
int im_h=im.rows();
int im_w=im.cols();
assert( (im_w % im_channel)==0 );
im_w/=im_channel;
int nf=block_y*block_x;
int np=(im_h-block_y+1)*(im_w-block_x+1);
if (X.rows()!=nf*im_channel || X.cols()!=np)
X.resize(nf*im_channel,np);
for(int c=0; c<im_channel; c++) {
//X.block(c*nf,0,nf,np) = im2col( im.block(0,c*im_w,im_w,im_w), block_y, block_x );
for(int dy=0; dy<block_y; dy++)
for(int dx=0; dx<block_x; dx++)
{
int inc=dy+dx*block_y+c*block_y*block_x;
for(int y=dy; y<im_h-block_y+1+dy; y++)
for(int x=dx; x<im_w-block_x+1+dx; x++)
X(inc,(y-dy)+(x-dx)*(im_h-block_y+1))=im(y,x+c*im_w);
}
}
return;
}
inline void remove_dc(MatrixXf& X)
{
//X.rowwise() -= X.colwise().sum();
for(int i=0; i<X.cols(); i++)
{
X.col(i).array() -= X.col(i).mean();
}
}
void smooth_bilinear(MatrixXf& hist, MatrixXf& codes, int hh, int ww, int ndic, int blocksize)
{
int ny=floor(hh/blocksize);
int nx=floor(ww/blocksize);
if (hist.rows()!=ny*nx || hist.cols()!=ndic)
hist.resize(ny*nx,ndic);
assert((blocksize % 2)==0); // will relax later
MatrixXi xgrid = RowVectorXi::LinSpaced(ww,1,ww).replicate(hh,1);
MatrixXi ygrid = VectorXi::LinSpaced(hh,1,hh).replicate(1,ww);
MatrixXf xp = (xgrid.array().cast<float>()-1+0.5)/blocksize-0.5;
MatrixXf yp = (ygrid.array().cast<float>()-1+0.5)/blocksize-0.5;
MatrixXi ixp = xp.cast<int>(); // -0.4 cast to 0 instead of -1
MatrixXi iyp = yp.cast<int>();
MatrixXf vx0 = xp-ixp.cast<float>();
MatrixXf vy0 = yp-iyp.cast<float>();
MatrixXf vx1 = 1.0-vx0.array();
MatrixXf vy1 = 1.0-vy0.array();
int sparsity=codes.cols()/2;
assert(codes.cols()==sparsity*2);
hist.setZero();
for(int s=0; s<sparsity; s++)
{
int ystart, yend, xstart, xend;
ystart=blocksize/2+1-1; yend=ny*blocksize-blocksize/2-1;
xstart=blocksize/2+1-1; xend=nx*blocksize-blocksize/2-1;
// discard everthing that's block/2 from boundary
for(int y=ystart; y<=yend; y++)
for(int x=xstart; x<=xend; x++)
{
int p=y+x*hh;
hist( iyp(y,x)+ixp(y,x)*ny, (int)codes(p,2*s) ) += vx1(y,x)*vy1(y,x)*codes(p,2*s+1);
hist( iyp(y,x)+1+ixp(y,x)*ny, (int)codes(p,2*s) ) += vx1(y,x)*vy0(y,x)*codes(p,2*s+1);
hist( iyp(y,x)+(ixp(y,x)+1)*ny, (int)codes(p,2*s) ) += vx0(y,x)*vy1(y,x)*codes(p,2*s+1);
hist( iyp(y,x)+1+(ixp(y,x)+1)*ny, (int)codes(p,2*s) ) += vx0(y,x)*vy0(y,x)*codes(p,2*s+1);
}
}
return;
}
void mexFunction( int nlhs, mxArray *plhs[] , int nrhs, const mxArray *prhs[] )
{
if ((nrhs!=3) || (nlhs!=1)) {
mexErrMsgTxt("Usage : features = features_omp_mex( im, sbin, encoder );");
}
// assume the input image is already [0,1] and converted to gray/ab
const mxArray* im_mat = prhs[0];
int sbin = (int)mxGetScalar(prhs[1]);
//assert(sbin==8);
int patchsize=(int)mxGetScalar(mxGetField(prhs[2],0,"patchsize"));
assert((patchsize % 2)==1);
int blocksize=(int)mxGetScalar(mxGetField(prhs[2],0,"blocksize"));
assert(blocksize==sbin); // deal with different blocksize later
int ndic=(int)mxGetScalar(mxGetField(prhs[2],0,"dicsize"));
int sparsity=(int)mxGetScalar(mxGetField(prhs[2],0,"sparsity"));
assert(sparsity>0);
int norm=(int)mxGetScalar(mxGetField(prhs[2],0,"norm")); // use numerical value 0/1/2
assert(norm==0 || norm==1 || norm==2);
float threshold=(float)mxGetScalar(mxGetField(prhs[2],0,"threshold"));
const mxArray* dic_mat=mxGetField(prhs[2],0,"dic");
// check whether input is single precision
if( !mxIsDouble(im_mat) ) {
mexPrintf("Error: im must be double precision\n");
return;
}
if( !mxIsDouble(dic_mat) ) {
mexPrintf("Error: dic must be double precision\n");
return;
}
int im_w, im_h, im_channel;
const mwSize* im_size = mxGetDimensions(im_mat);
im_h=im_size[0];
im_w=im_size[1];
if (mxGetNumberOfDimensions(im_mat)<3) {
im_channel=1;
} else {
im_channel=im_size[2];
}
int nf=patchsize*patchsize*im_channel; // input feature size at every pixel
assert(mxGetM(dic_mat)==nf);
assert(mxGetN(dic_mat)==ndic);
MatrixXf im(im_h,im_w*im_channel); // no multidimensional array for Eigen?
copy_double_to_float( im.data(), (double*)mxGetData(im_mat), im_w*im_h*im_channel );
padarray(im,im_h, im_w, im_channel, (patchsize-1)/2,(patchsize-1)/2);
MatrixXf X;
im2col_multi( X, im, patchsize, patchsize, im_channel ); // sliding
//remove_dc(X); // not needed, dic are zero mean
MatrixXf dic(nf,ndic);
copy_double_to_float( dic.data(), (double*)mxGetData(dic_mat), nf*ndic );
MatrixXf DtX=(dic.transpose()*X);
MatrixXf G=(dic.transpose()*dic);
MatrixXf omp_codes(im_w*im_h,sparsity*2);
omp( DtX, G, sparsity, omp_codes );
for(int k=0; k<sparsity; k++)
omp_codes.col(2*k+1) = omp_codes.col(2*k+1).array().abs();
int ny=(int)(im_h/sbin);
int nx=(int)(im_w/sbin);
MatrixXf hist(ny*nx,ndic);
smooth_bilinear(hist, omp_codes, im_h, im_w, ndic, blocksize);
normalize(hist,norm,threshold);
MatrixXf f( (ny-2)*(nx-2),ndic );
for(int y=1; y<ny-1; y++)
for(int x=1; x<nx-1; x++)
f.row((y-1)+(x-1)*(ny-2))=hist.row(y+x*ny);
if (mxGetField(prhs[2],0,"power_trans")!=NULL) {
mxArray* power_trans=mxGetField(prhs[2],0,"power_trans");
int npow=max(mxGetM(power_trans),mxGetN(power_trans));
double* pows=(double*)mxGetData(power_trans);
MatrixXf f_pow( (ny-2)*(nx-2),ndic*npow );
for(int ipow=0; ipow<npow; ipow++)
f_pow.block(0,ipow*ndic,(ny-2)*(nx-2),ndic)=f.array().pow(pows[ipow]);
f=f_pow;
}
if (mxGetField(prhs[2],0,"pad_zero")!=NULL) {
int pad_zero=(int)mxGetScalar(mxGetField(prhs[2],0,"pad_zero"));
if (pad_zero>0) {
f.conservativeResize((ny-2)*(nx-2),f.cols()+pad_zero);
f.block(0,f.cols()-pad_zero,(ny-2)*(nx-2),pad_zero).setZero();
}
}
mwSize outDims[3];
outDims[0]=ny-2; outDims[1]=nx-2; outDims[2]=f.cols();
plhs[0] = mxCreateNumericArray(3,outDims,mxDOUBLE_CLASS,mxREAL);
copy_float_to_double( (double*)mxGetData(plhs[0]), f.data(), f.rows()*f.cols() );
return;
}

Answers (0)

Categories

Find more on Programming in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!