Parallel optimization with extra parameters (fmincon)
3 views (last 30 days)
Show older comments
how do i run optimization (fmincon) repeatedly
I have a function
f = p1 + 2*a*c*p2 + 2*a*b*p3 + 2*b*c*p4
where
p1=-sin(((x(2)-x(1))/2)+((x(4)-x(3))/2)+((x(6)-x(5))/2))+sin(((x(4)-x(3))/2)+((x(6)-x(5))/2)-((x(2)-x(1))/2))+sin(((x(2)-x(1))/2)+((x(6)-x(5))/2)-((x(4)-x(3))/2))+sin(((x(2)-x(1))/2)+((x(4)-x(3))/2)-((x(6)-x(5))/2));
p2=sin(((x(2)-x(1))/2)+((x(4)-x(3))/2)+((x(6)-x(5))/2))+sin(((x(4)-x(3))/2)+((x(6)-x(5))/2)-((x(2)-x(1))/2))-sin(((x(2)-x(1))/2)+((x(6)-x(5))/2)-((x(4)-x(3))/2))+sin(((x(2)-x(1))/2)+((x(4)-x(3))/2)-((x(6)-x(5))/2));
p3=sin(((x(2)-x(1))/2)+((x(4)-x(3))/2)+((x(6)-x(5))/2))-sin(((x(4)-x(3))/2)+((x(6)-x(5))/2)-((x(2)-x(1))/2))+sin(((x(2)-x(1))/2)+((x(6)-x(5))/2)-((x(4)-x(3))/2))+sin(((x(2)-x(1))/2)+((x(4)-x(3))/2)-((x(6)-x(5))/2));
p4=sin(((x(2)-x(1))/2)+((x(4)-x(3))/2)+((x(6)-x(5))/2))+sin(((x(4)-x(3))/2)+((x(6)-x(5))/2)-((x(2)-x(1))/2))+sin(((x(2)-x(1))/2)+((x(6)-x(5))/2)-((x(4)-x(3))/2))-sin(((x(2)-x(1))/2)+((x(4)-x(3))/2)-((x(6)-x(5))/2));
and x1 until x6 are angles subject to the bound constraint from 0 to pi.
I want to minimize this function for a range of a=[0:0.01:1] and b=[0:0.01:1]. (That is, I want to minimize this function for each a,b=0, a,b=0.01,a,b=0.02 ... and so on). *Also , there is a normalize condition which is a^2+b^2+c^2=1.*
so this my code
Step 1: Write a file objfun.m.
function f= objfun (x,a,b,c)
a=.57;
b=.57; % i pick a number for a,b
c=sqrt(1-a*a-b*b);
p1=-sin(((x(2)-x(1))/2)+((x(4)-x(3))/2)+((x(6)-x(5))/2))+sin(((x(4)-x(3))/2)+((x(6)-x(5))/2)-((x(2)-x(1))/2))+sin(((x(2)-x(1))/2)+((x(6)-x(5))/2)-((x(4)-x(3))/2))+sin(((x(2)-x(1))/2)+((x(4)-x(3))/2)-((x(6)-x(5))/2));
p2=sin(((x(2)-x(1))/2)+((x(4)-x(3))/2)+((x(6)-x(5))/2))+sin(((x(4)-x(3))/2)+((x(6)-x(5))/2)-((x(2)-x(1))/2))-sin(((x(2)-x(1))/2)+((x(6)-x(5))/2)-((x(4)-x(3))/2))+sin(((x(2)-x(1))/2)+((x(4)-x(3))/2)-((x(6)-x(5))/2));
p3=sin(((x(2)-x(1))/2)+((x(4)-x(3))/2)+((x(6)-x(5))/2))-sin(((x(4)-x(3))/2)+((x(6)-x(5))/2)-((x(2)-x(1))/2))+sin(((x(2)-x(1))/2)+((x(6)-x(5))/2)-((x(4)-x(3))/2))+sin(((x(2)-x(1))/2)+((x(4)-x(3))/2)-((x(6)-x(5))/2));
p4=sin(((x(2)-x(1))/2)+((x(4)-x(3))/2)+((x(6)-x(5))/2))+sin(((x(4)-x(3))/2)+((x(6)-x(5))/2)-((x(2)-x(1))/2))+sin(((x(2)-x(1))/2)+((x(6)-x(5))/2)-((x(4)-x(3))/2))-sin(((x(2)-x(1))/2)+((x(4)-x(3))/2)-((x(6)-x(5))/2));
%f=4*(p1+C13*p2+C12*p3+C23*p4);
f=p1+2*a*c*p2+2*a*b*p3+2*b*c*p4;
Step 2: Invoke constrained optimization routine.
x=[x(1),x(2),x(3),x(4),x(5),x(6)]; % angles;
lb=[0,0,0,0,0,0];
ub=[pi,pi,pi,pi,pi,pi];
x0=[pi/8;pi/3;0.7*pi;pi/2;.5;pi/4];
[x,fval]=fmincon(@objfun,x0,[],[],[],[],lb,ub)
the solution produced is
x=
2.5530
0.6431
2.5305
0.6195
2.5531
0.6421
fval=
-4.3546
can any one change the code so that, the optimization will run for 0:0.01:1 times, and save the optimal values for each a,b?
0 Comments
Answers (1)
Marc
on 28 Nov 2015
Edited: Walter Roberson
on 28 Nov 2015
You can try a for loop...
Something like this.
a = 0:0.01:1;
b = 0:0.01:1;
mSize = max(size(a));
xNew = zeros(mSize,6); % Preallocate for speed
fNew = zeros(mSize,1);
for n = 1:mSize
a1 = a(n);
b1 = b(n);
%%%here you put your c and fmincon like above
xNew(n,:) = x; % from fmincon
fNew(n) = feval; % from fmincon
end
I think this should work. May take a while. You may want to start with something like a = 0:0.1:1 before trying the rest.
The code above assumes a and b will always be equal. If you want different combinations, then you will need two for loops. One nested within.
See Also
Categories
Find more on Get Started with Optimization Toolbox in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!