- The ode solver should be called as oriented object fully, i think that help
- The ode function must have linked the parameter to gamma and beta
- The ode funcion must return the values of the slopes (it was fixed at dydt = [0;0;0])
SENSITIVITY ANALYSIS OF A SYSTEM OF AN ODE USING NORMALIZED SENSITIVITY FUNCTION
29 views (last 30 days)
Show older comments
I want to perform the sensitivity analysis on the parameters of an ODE SIR model using normalized sensitivity function. I used the following code below. When it was run, I got this error: "undefined functionnor variable 'p', error in epidemic1 line8, F=ode45(@epidemic,ic,p)". How can I resolve it to get the plots?
My interest is to get the figure (3) i.e. The plot of nomalized sensitivity functions against time
function epidemic1()
clc
beta=0.4; gamma=0.04;
p1 = [beta gamma];
ic = [995;5;0];
F = ode45(@epidemic,ic,p);
sol1 = solve(F,0,80)
figure(1)
plot(sol1.Time,sol1.Solution,'-o')
legend('S','I','R')
title(['SIR Populations over Time','$\beta=0.4$, $\gamma=0.04$'],'Interpreter','latex')
xlabel('Time','Interpreter','latex')
ylabel('Population','Interpreter','latex')
Figure(2)
p2 = [0.2 0.1];
F.Parameters = p2;
F.Sensitivity = odeSensitivity;
sol2 = solve(F,0,80)
plot(sol2.Time,sol2.Solution,'-o')
legend('S','I','R')
title(['SIR Populations over Time','\beta=0.2$, $\gamma=0.1$'],'Interpreter','latex')
xlabel('Time','Interpreter','latex')
ylabel('Population','Interpreter','latex')
U11 = squeeze(sol2.Sensitivity(1,1,:))'.*(p2(1)./sol2.Solution(1,:));
U12 = squeeze(sol2.Sensitivity(1,2,:))'.*(p2(2)./sol2.Solution(1,:));
U21 = squeeze(sol2.Sensitivity(2,1,:))'.*(p2(1)./sol2.Solution(2,:));
U22 = squeeze(sol2.Sensitivity(2,2,:))'.*(p2(2)./sol2.Solution(2,:));
U31 = squeeze(sol2.Sensitivity(3,1,:))'.*(p2(1)./sol2.Solution(3,:));
U32 = squeeze(sol2.Sensitivity(3,2,:))'.*(p2(2)./sol2.Solution(3,:));
Figure(3)
t = tiledlayout(3,2);
title(t,['Parameter Sensitivity by Equation','$\beta=0.2$, $\gamma=0.1$'],'Interpreter','latex')
xlabel(t,'Time','Interpreter','latex')
ylabel(t,'\% Change in Eqn','Interpreter','latex')
nexttile
plot(sol2.Time,U11)
title('$\beta$, Eqn. 1','Interpreter','latex')
ylim([-5 5])
nexttile
plot(sol2.Time,U12)
title('$\gamma$, Eqn. 1','Interpreter','latex')
ylim([-5 5])
nexttile
plot(sol2.Time,U21)
title('$\beta$, Eqn. 2','Interpreter','latex')
ylim([-5 5])
nexttile
plot(sol2.Time,U22)
title('$\gamma$, Eqn. 2','Interpreter','latex')
ylim([-5 5])
nexttile
plot(sol2.Time,U31)
title('$\beta$, Eqn. 3','Interpreter','latex')
ylim([-5 5])
nexttile
plot(sol2.Time,U32)
title('$\gamma$, Eqn. 3','Interpreter','latex')
ylim([-5 5])
function dydt = epidemic(t,y,p)
dydt = [0;0;0];
S = y(1);
I = y(2);
R = y(3);
N = S + I + R;
dSdt = -beta*(I*S)/N;
dIdt = beta*(I*S)/N - gamma*I;
dRdt = gamma*I;
end
end
2 Comments
Simon Diaz
on 1 Nov 2024 at 1:33
I found some issues. Here are the main :
Also figures must be called with lowercase (figure not Figure)
%% Corrected version epidemic1()
clc;close all;clear all
beta=0.4; gamma=0.04;
p1 = [beta gamma];
ic = [995;5;0];
fun_ode = @(t,x,p)epidemic(t,x,p);
problem_ode = ode( ODEFcn = fun_ode ); % Define ODE function
problem_ode.InitialValue = ic; % Inivial value x(t=t0)
problem_ode.Parameters = p1;
sol1 = solve(problem_ode,0,80)
figure(1)
plot(sol1.Time,sol1.Solution,'-o')
legend('S','I','R')
title(['SIR Populations over Time','$\beta=0.4$, $\gamma=0.04$'],'Interpreter','latex')
xlabel('Time','Interpreter','latex')
ylabel('Population','Interpreter','latex')
figure(2)
p2 = [0.2 0.1];
problem_ode.Parameters = p2;
problem_ode.Sensitivity = odeSensitivity;
sol2 = solve(problem_ode,0,80)
plot(sol2.Time,sol2.Solution,'-o')
legend('S','I','R')
title(['SIR Populations over Time','\beta=0.2$, $\gamma=0.1$'],'Interpreter','latex')
xlabel('Time','Interpreter','latex')
ylabel('Population','Interpreter','latex')
U11 = squeeze(sol2.Sensitivity(1,1,:))'.*(p2(1)./sol2.Solution(1,:));
U12 = squeeze(sol2.Sensitivity(1,2,:))'.*(p2(2)./sol2.Solution(1,:));
U21 = squeeze(sol2.Sensitivity(2,1,:))'.*(p2(1)./sol2.Solution(2,:));
U22 = squeeze(sol2.Sensitivity(2,2,:))'.*(p2(2)./sol2.Solution(2,:));
U31 = squeeze(sol2.Sensitivity(3,1,:))'.*(p2(1)./sol2.Solution(3,:));
U32 = squeeze(sol2.Sensitivity(3,2,:))'.*(p2(2)./sol2.Solution(3,:));
figure(3)
t = tiledlayout(3,2);
title(t,['Parameter Sensitivity by Equation','$\beta=0.2$, $\gamma=0.1$'],'Interpreter','latex')
xlabel(t,'Time','Interpreter','latex')
ylabel(t,'\% Change in Eqn','Interpreter','latex')
nexttile
plot(sol2.Time,U11)
title('$\beta$, Eqn. 1','Interpreter','latex')
ylim([-5 5])
nexttile
plot(sol2.Time,U12)
title('$\gamma$, Eqn. 1','Interpreter','latex')
ylim([-5 5])
nexttile
plot(sol2.Time,U21)
title('$\beta$, Eqn. 2','Interpreter','latex')
ylim([-5 5])
nexttile
plot(sol2.Time,U22)
title('$\gamma$, Eqn. 2','Interpreter','latex')
ylim([-5 5])
nexttile
plot(sol2.Time,U31)
title('$\beta$, Eqn. 3','Interpreter','latex')
ylim([-5 5])
nexttile
plot(sol2.Time,U32)
title('$\gamma$, Eqn. 3','Interpreter','latex')
ylim([-5 5])
function dydt = epidemic(t,y,p)
S = y(1);
I = y(2);
R = y(3);
N = S + I + R;
beta = p(1);
gamma = p(2);
dSdt = -beta*(I*S)/N;
dIdt = beta*(I*S)/N - gamma*I;
dRdt = gamma*I;
dydt = [dSdt;dIdt;dRdt];
end
Answers (1)
Star Strider
on 9 Jun 2024
I am not certain that this does everything you want, however it now has the virtue of running without error —
epidemic1
function epidemic1()
clc
beta=0.4; gamma=0.04;
p1 = [beta gamma];
ic = [995;5;0];
F = ode;
F.ODEFcn = @(t,y)epidemic(t,y,p1);
F.InitialValue = ic;
F.SelectedSolver
sol1 = solve(F,0,80)
figure(1)
plot(sol1.Time,sol1.Solution,'-o')
legend('S','I','R')
title(["SIR Populations over Time","$\beta=0.4$, $\gamma=0.04$"],'Interpreter','latex')
xlabel('Time','Interpreter','latex')
ylabel('Population','Interpreter','latex')
figure(2)
p2 = [0.2 0.1];
F.Parameters = p2;
F.Sensitivity = odeSensitivity;
sol2 = solve(F,0,80)
plot(sol2.Time,sol2.Solution,'-o')
legend('S','I','R')
title(['SIR Populations over Time','$\beta=0.2$, $\gamma=0.1$'],'Interpreter','latex')
xlabel('Time','Interpreter','latex')
ylabel('Population','Interpreter','latex')
U11 = squeeze(sol2.Sensitivity(1,1,:))'.*(p2(1)./sol2.Solution(1,:));
U12 = squeeze(sol2.Sensitivity(1,2,:))'.*(p2(2)./sol2.Solution(1,:));
U21 = squeeze(sol2.Sensitivity(2,1,:))'.*(p2(1)./sol2.Solution(2,:));
U22 = squeeze(sol2.Sensitivity(2,2,:))'.*(p2(2)./sol2.Solution(2,:));
U31 = squeeze(sol2.Sensitivity(3,1,:))'.*(p2(1)./sol2.Solution(3,:));
U32 = squeeze(sol2.Sensitivity(3,2,:))'.*(p2(2)./sol2.Solution(3,:));
figure(3)
t = tiledlayout(3,2);
title(t,["Parameter Sensitivity by Equation","$\beta=0.2$, $\gamma=0.1$"],'Interpreter','latex')
xlabel(t,'Time','Interpreter','latex')
ylabel(t,'\% Change in Eqn','Interpreter','latex')
nexttile
plot(sol2.Time,U11)
title('$\beta$, Eqn. 1','Interpreter','latex')
ylim([-5 5])
nexttile
plot(sol2.Time,U12)
title('$\gamma$, Eqn. 1','Interpreter','latex')
ylim([-5 5])
nexttile
plot(sol2.Time,U21)
title('$\beta$, Eqn. 2','Interpreter','latex')
ylim([-5 5])
nexttile
plot(sol2.Time,U22)
title('$\gamma$, Eqn. 2','Interpreter','latex')
ylim([-5 5])
nexttile
plot(sol2.Time,U31)
title('$\beta$, Eqn. 3','Interpreter','latex')
ylim([-5 5])
nexttile
plot(sol2.Time,U32)
title('$\gamma$, Eqn. 3','Interpreter','latex')
ylim([-5 5])
function dydt = epidemic(t,y,p)
dydt = [0;0;0];
S = y(1);
I = y(2);
R = y(3);
N = S + I + R;
dSdt = -beta*(I*S)/N;
dIdt = beta*(I*S)/N - gamma*I;
dRdt = gamma*I;
end
end
.
5 Comments
Star Strider
on 9 Jun 2024
@SAHEED AJAO — It would be best to upgrade. However, you can run it here (although not on MATLAB Online, since it reflects your version and installed Toolboxes).
As @Sam Chak mentioned, you can calculate it manually. If you have the Symbolic Math Toolbox, using the jacobian function and then the matlabFunction function makes that easier.
Sam Chak
on 9 Jun 2024
The formula can be found here:
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!