precision-recall curve for faster rcnn

3 views (last 30 days)
hi
i want to find precision-recall curve of my tranied faster rcnn detector.i tried thi code
testData = transform(testData,@(data)preprocessData(data,inputSize));
detectionResults = detect(detector,testData,'MinibatchSize',4);
classID = 1;
metrics = evaluateObjectDetection(detectionResults,testData);
precision = metrics.ClassMetrics.Precision{classID};
recall = metrics.ClassMetrics.Recall{classID};
figure
plot(recall,precision)
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f', metrics.ClassMetrics.mAP(classID)))
but it shows error on evaluateObjectDetection that this is not in matlab second is that it show error that dot errorr is not worked in this( metrics.ClassMetrics.Precision{classID};)
so is there any other way to find precission-recall for multiple classes

Accepted Answer

Walter Roberson
Walter Roberson on 28 Nov 2023
https://www.mathworks.com/help/vision/ref/evaluateobjectdetection.html was introduced in R2023b, but you have R2023a.
There are no functions available in R2023a that return metrics.

More Answers (0)

Categories

Find more on Computer Vision Toolbox in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!