Equivalent Impedance using Matrix, Eigen value and Eigen vector, norm
2 views (last 30 days)
Show older comments
I am solving this below problem(attachment 1). How to find the exp(theta1) and exp(theta2)...?
- Attachment pdf.pdf is the problem I am trying to solve.
- Attachment Tzeng_2006_J._Phys._A__Math._Gen._39_8579.pdf is the theory
Y11 =1-1i/sqrt(3); Y12 =1i/sqrt(3); Y13 =-1;
Y21 =1i/sqrt(3); Y22 =0; Y23 =-1i/sqrt(3);
Y31 =-1; Y32 =-1i/sqrt(3); Y33 =1+1i/sqrt(3);
Y11 = Y12 + Y13 ; Y22 = Y21 + Y23 ; Y33 = Y31 + Y32 ;
L = [Y11, Y12, Y13; Y21, Y22, Y23; Y31, Y32, Y33];
[EVector,EValue] = eig(L'*L) ; % V = Values % D = VECTORS
Sigma_2 = sqrt(EValue(2,2))
Sigma_3 = sqrt(EValue(3,3))


3 Comments
Walter Roberson
on 9 Nov 2023
Q = @(v) sym(v);
Y11 = 1-1i/sqrt(Q(3)); Y12 = 1i/sqrt(Q(3)); Y13 = Q(-1);
Y21 = 1i/sqrt(Q(3)); Y22 = Q(0); Y23 = -1i/sqrt(Q(3));
Y31 = -1; Y32 = -1i/sqrt(Q(3)); Y33 = 1+1i/sqrt(Q(3));
Y = [Y11, Y12, Y13; Y21, Y22, Y23; Y31, Y32, Y33; Y41, Y42, Y43]
A = L'*L ; % e = eig(L_P*L);
[V,EVC] = eig(A) % V = Values % D = VECTOR
Answers (0)
See Also
Categories
Find more on Linear Algebra in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!