You are now following this question
- You will see updates in your followed content feed.
- You may receive emails, depending on your communication preferences.
Shuffle matrix based on column elements
3 views (last 30 days)
Show older comments
Hi,
I have matrices like in the file attached below. The 4 columns log for stimuli representation in time. The rows are time and the columns are events. The first column logs stimuli id in time. (No stimulus =0, stimulus : 1 2 3 4 5 or 6) The second column logs the stimulus presentation time and its duration (0= No stimulus, 2=Stimulus); column 3 logs duration and ID of each trial. Trial 1 ==1; Trial trial 2 ==2; etc . I need to shuffle trials Ids (column3). Can anyone help with it?
Accepted Answer
Voss
on 8 Oct 2023
Here's one way:
data = readmatrix('logfile_example-30-09-23.xlsx')
data = 1820×4
0 1 1 1
0 1 1 2
0 1 1 3
0 1 1 4
0 1 1 5
0 1 1 6
0 1 1 7
0 1 1 8
0 1 1 9
0 1 1 10
[trial_idx,trial_id] = findgroups(data(:,3));
n_trials = numel(trial_id);
order = randperm(n_trials)
order = 1×10
4 9 3 2 1 6 10 8 7 5
result = [];
for ii = 1:n_trials
result = [result; data(trial_idx == order(ii),:)];
end
disp(result);
0 1 4 547
0 1 4 548
0 1 4 549
0 1 4 550
0 1 4 551
0 1 4 552
0 1 4 553
0 1 4 554
0 1 4 555
0 1 4 556
0 1 4 557
0 1 4 558
0 1 4 559
0 1 4 560
0 1 4 561
0 1 4 562
0 1 4 563
0 1 4 564
0 1 4 565
0 1 4 566
0 1 4 567
0 1 4 568
0 1 4 569
0 1 4 570
0 1 4 571
0 1 4 572
0 1 4 573
0 1 4 574
0 1 4 575
0 1 4 576
0 1 4 577
0 1 4 578
0 1 4 579
0 1 4 580
0 1 4 581
0 1 4 582
0 1 4 583
0 1 4 584
0 1 4 585
0 1 4 586
0 1 4 587
0 1 4 588
0 1 4 589
0 1 4 590
0 1 4 591
0 1 4 592
0 1 4 593
0 1 4 594
0 1 4 595
0 1 4 596
0 1 4 597
0 1 4 598
0 1 4 599
0 1 4 600
0 1 4 601
0 1 4 602
0 1 4 603
0 1 4 604
0 1 4 605
0 1 4 606
0 1 4 607
0 1 4 608
0 1 4 609
0 1 4 610
0 1 4 611
0 1 4 612
0 1 4 613
0 1 4 614
0 1 4 615
0 1 4 616
2 2 4 617
2 2 4 618
2 2 4 619
2 2 4 620
2 2 4 621
2 2 4 622
2 2 4 623
2 2 4 624
2 2 4 625
2 2 4 626
2 2 4 627
2 2 4 628
2 2 4 629
2 2 4 630
2 2 4 631
2 2 4 632
2 2 4 633
2 2 4 634
2 2 4 635
2 2 4 636
2 2 4 637
2 2 4 638
2 2 4 639
2 2 4 640
2 2 4 641
2 2 4 642
2 2 4 643
2 2 4 644
2 2 4 645
2 2 4 646
2 2 4 647
2 2 4 648
2 2 4 649
2 2 4 650
2 2 4 651
2 2 4 652
2 2 4 653
2 2 4 654
2 2 4 655
2 2 4 656
2 2 4 657
2 2 4 658
0 3 4 659
0 3 4 660
0 3 4 661
0 3 4 662
0 3 4 663
0 3 4 664
0 3 4 665
0 3 4 666
0 3 4 667
0 3 4 668
0 3 4 669
0 3 4 670
0 3 4 671
0 3 4 672
0 3 4 673
0 3 4 674
0 3 4 675
0 3 4 676
0 3 4 677
0 3 4 678
0 3 4 679
0 3 4 680
0 3 4 681
0 3 4 682
0 3 4 683
0 3 4 684
0 3 4 685
0 3 4 686
0 3 4 687
0 3 4 688
0 3 4 689
0 3 4 690
0 3 4 691
0 3 4 692
0 3 4 693
0 3 4 694
0 3 4 695
0 3 4 696
0 3 4 697
0 3 4 698
0 3 4 699
0 3 4 700
0 3 4 701
0 3 4 702
0 3 4 703
0 3 4 704
0 3 4 705
0 3 4 706
0 3 4 707
0 3 4 708
0 3 4 709
0 3 4 710
0 3 4 711
0 3 4 712
0 3 4 713
0 3 4 714
0 3 4 715
0 3 4 716
0 3 4 717
0 3 4 718
0 3 4 719
0 3 4 720
0 3 4 721
0 3 4 722
0 3 4 723
0 3 4 724
0 3 4 725
0 3 4 726
0 3 4 727
0 3 4 728
0 1 9 1457
0 1 9 1458
0 1 9 1459
0 1 9 1460
0 1 9 1461
0 1 9 1462
0 1 9 1463
0 1 9 1464
0 1 9 1465
0 1 9 1466
0 1 9 1467
0 1 9 1468
0 1 9 1469
0 1 9 1470
0 1 9 1471
0 1 9 1472
0 1 9 1473
0 1 9 1474
0 1 9 1475
0 1 9 1476
0 1 9 1477
0 1 9 1478
0 1 9 1479
0 1 9 1480
0 1 9 1481
0 1 9 1482
0 1 9 1483
0 1 9 1484
0 1 9 1485
0 1 9 1486
0 1 9 1487
0 1 9 1488
0 1 9 1489
0 1 9 1490
0 1 9 1491
0 1 9 1492
0 1 9 1493
0 1 9 1494
0 1 9 1495
0 1 9 1496
0 1 9 1497
0 1 9 1498
0 1 9 1499
0 1 9 1500
0 1 9 1501
0 1 9 1502
0 1 9 1503
0 1 9 1504
0 1 9 1505
0 1 9 1506
0 1 9 1507
0 1 9 1508
0 1 9 1509
0 1 9 1510
0 1 9 1511
0 1 9 1512
0 1 9 1513
0 1 9 1514
0 1 9 1515
0 1 9 1516
0 1 9 1517
0 1 9 1518
0 1 9 1519
0 1 9 1520
0 1 9 1521
0 1 9 1522
0 1 9 1523
0 1 9 1524
0 1 9 1525
0 1 9 1526
2 2 9 1527
2 2 9 1528
2 2 9 1529
2 2 9 1530
2 2 9 1531
2 2 9 1532
2 2 9 1533
2 2 9 1534
2 2 9 1535
2 2 9 1536
2 2 9 1537
2 2 9 1538
2 2 9 1539
2 2 9 1540
2 2 9 1541
2 2 9 1542
2 2 9 1543
2 2 9 1544
2 2 9 1545
2 2 9 1546
2 2 9 1547
2 2 9 1548
2 2 9 1549
2 2 9 1550
2 2 9 1551
2 2 9 1552
2 2 9 1553
2 2 9 1554
2 2 9 1555
2 2 9 1556
2 2 9 1557
2 2 9 1558
2 2 9 1559
2 2 9 1560
2 2 9 1561
2 2 9 1562
2 2 9 1563
2 2 9 1564
2 2 9 1565
2 2 9 1566
2 2 9 1567
2 2 9 1568
0 3 9 1569
0 3 9 1570
0 3 9 1571
0 3 9 1572
0 3 9 1573
0 3 9 1574
0 3 9 1575
0 3 9 1576
0 3 9 1577
0 3 9 1578
0 3 9 1579
0 3 9 1580
0 3 9 1581
0 3 9 1582
0 3 9 1583
0 3 9 1584
0 3 9 1585
0 3 9 1586
0 3 9 1587
0 3 9 1588
0 3 9 1589
0 3 9 1590
0 3 9 1591
0 3 9 1592
0 3 9 1593
0 3 9 1594
0 3 9 1595
0 3 9 1596
0 3 9 1597
0 3 9 1598
0 3 9 1599
0 3 9 1600
0 3 9 1601
0 3 9 1602
0 3 9 1603
0 3 9 1604
0 3 9 1605
0 3 9 1606
0 3 9 1607
0 3 9 1608
0 3 9 1609
0 3 9 1610
0 3 9 1611
0 3 9 1612
0 3 9 1613
0 3 9 1614
0 3 9 1615
0 3 9 1616
0 3 9 1617
0 3 9 1618
0 3 9 1619
0 3 9 1620
0 3 9 1621
0 3 9 1622
0 3 9 1623
0 3 9 1624
0 3 9 1625
0 3 9 1626
0 3 9 1627
0 3 9 1628
0 3 9 1629
0 3 9 1630
0 3 9 1631
0 3 9 1632
0 3 9 1633
0 3 9 1634
0 3 9 1635
0 3 9 1636
0 3 9 1637
0 3 9 1638
0 1 3 365
0 1 3 366
0 1 3 367
0 1 3 368
0 1 3 369
0 1 3 370
0 1 3 371
0 1 3 372
0 1 3 373
0 1 3 374
0 1 3 375
0 1 3 376
0 1 3 377
0 1 3 378
0 1 3 379
0 1 3 380
0 1 3 381
0 1 3 382
0 1 3 383
0 1 3 384
0 1 3 385
0 1 3 386
0 1 3 387
0 1 3 388
0 1 3 389
0 1 3 390
0 1 3 391
0 1 3 392
0 1 3 393
0 1 3 394
0 1 3 395
0 1 3 396
0 1 3 397
0 1 3 398
0 1 3 399
0 1 3 400
0 1 3 401
0 1 3 402
0 1 3 403
0 1 3 404
0 1 3 405
0 1 3 406
0 1 3 407
0 1 3 408
0 1 3 409
0 1 3 410
0 1 3 411
0 1 3 412
0 1 3 413
0 1 3 414
0 1 3 415
0 1 3 416
0 1 3 417
0 1 3 418
0 1 3 419
0 1 3 420
0 1 3 421
0 1 3 422
0 1 3 423
0 1 3 424
0 1 3 425
0 1 3 426
0 1 3 427
0 1 3 428
0 1 3 429
0 1 3 430
0 1 3 431
0 1 3 432
0 1 3 433
0 1 3 434
1 2 3 435
1 2 3 436
1 2 3 437
1 2 3 438
1 2 3 439
1 2 3 440
1 2 3 441
1 2 3 442
1 2 3 443
1 2 3 444
1 2 3 445
1 2 3 446
1 2 3 447
1 2 3 448
1 2 3 449
1 2 3 450
1 2 3 451
1 2 3 452
1 2 3 453
1 2 3 454
1 2 3 455
1 2 3 456
1 2 3 457
1 2 3 458
1 2 3 459
1 2 3 460
1 2 3 461
1 2 3 462
1 2 3 463
1 2 3 464
1 2 3 465
1 2 3 466
1 2 3 467
1 2 3 468
1 2 3 469
1 2 3 470
1 2 3 471
1 2 3 472
1 2 3 473
1 2 3 474
1 2 3 475
1 2 3 476
0 3 3 477
0 3 3 478
0 3 3 479
0 3 3 480
0 3 3 481
0 3 3 482
0 3 3 483
0 3 3 484
0 3 3 485
0 3 3 486
0 3 3 487
0 3 3 488
0 3 3 489
0 3 3 490
0 3 3 491
0 3 3 492
0 3 3 493
0 3 3 494
0 3 3 495
0 3 3 496
0 3 3 497
0 3 3 498
0 3 3 499
0 3 3 500
0 3 3 501
0 3 3 502
0 3 3 503
0 3 3 504
0 3 3 505
0 3 3 506
0 3 3 507
0 3 3 508
0 3 3 509
0 3 3 510
0 3 3 511
0 3 3 512
0 3 3 513
0 3 3 514
0 3 3 515
0 3 3 516
0 3 3 517
0 3 3 518
0 3 3 519
0 3 3 520
0 3 3 521
0 3 3 522
0 3 3 523
0 3 3 524
0 3 3 525
0 3 3 526
0 3 3 527
0 3 3 528
0 3 3 529
0 3 3 530
0 3 3 531
0 3 3 532
0 3 3 533
0 3 3 534
0 3 3 535
0 3 3 536
0 3 3 537
0 3 3 538
0 3 3 539
0 3 3 540
0 3 3 541
0 3 3 542
0 3 3 543
0 3 3 544
0 3 3 545
0 3 3 546
0 1 2 183
0 1 2 184
0 1 2 185
0 1 2 186
0 1 2 187
0 1 2 188
0 1 2 189
0 1 2 190
0 1 2 191
0 1 2 192
0 1 2 193
0 1 2 194
0 1 2 195
0 1 2 196
0 1 2 197
0 1 2 198
0 1 2 199
0 1 2 200
0 1 2 201
0 1 2 202
0 1 2 203
0 1 2 204
0 1 2 205
0 1 2 206
0 1 2 207
0 1 2 208
0 1 2 209
0 1 2 210
0 1 2 211
0 1 2 212
0 1 2 213
0 1 2 214
0 1 2 215
0 1 2 216
0 1 2 217
0 1 2 218
0 1 2 219
0 1 2 220
0 1 2 221
0 1 2 222
0 1 2 223
0 1 2 224
0 1 2 225
0 1 2 226
0 1 2 227
0 1 2 228
0 1 2 229
0 1 2 230
0 1 2 231
0 1 2 232
0 1 2 233
0 1 2 234
0 1 2 235
0 1 2 236
0 1 2 237
0 1 2 238
0 1 2 239
0 1 2 240
0 1 2 241
0 1 2 242
0 1 2 243
0 1 2 244
0 1 2 245
0 1 2 246
0 1 2 247
0 1 2 248
0 1 2 249
0 1 2 250
0 1 2 251
0 1 2 252
1 2 2 253
1 2 2 254
1 2 2 255
1 2 2 256
1 2 2 257
1 2 2 258
1 2 2 259
1 2 2 260
1 2 2 261
1 2 2 262
1 2 2 263
1 2 2 264
1 2 2 265
1 2 2 266
1 2 2 267
1 2 2 268
1 2 2 269
1 2 2 270
1 2 2 271
1 2 2 272
1 2 2 273
1 2 2 274
1 2 2 275
1 2 2 276
1 2 2 277
1 2 2 278
1 2 2 279
1 2 2 280
1 2 2 281
1 2 2 282
1 2 2 283
1 2 2 284
1 2 2 285
1 2 2 286
1 2 2 287
1 2 2 288
1 2 2 289
1 2 2 290
1 2 2 291
1 2 2 292
1 2 2 293
1 2 2 294
0 3 2 295
0 3 2 296
0 3 2 297
0 3 2 298
0 3 2 299
0 3 2 300
0 3 2 301
0 3 2 302
0 3 2 303
0 3 2 304
0 3 2 305
0 3 2 306
0 3 2 307
0 3 2 308
0 3 2 309
0 3 2 310
0 3 2 311
0 3 2 312
0 3 2 313
0 3 2 314
0 3 2 315
0 3 2 316
0 3 2 317
0 3 2 318
0 3 2 319
0 3 2 320
0 3 2 321
0 3 2 322
0 3 2 323
0 3 2 324
0 3 2 325
0 3 2 326
0 3 2 327
0 3 2 328
0 3 2 329
0 3 2 330
0 3 2 331
0 3 2 332
0 3 2 333
0 3 2 334
0 3 2 335
0 3 2 336
0 3 2 337
0 3 2 338
0 3 2 339
0 3 2 340
0 3 2 341
0 3 2 342
0 3 2 343
0 3 2 344
0 3 2 345
0 3 2 346
0 3 2 347
0 3 2 348
0 3 2 349
0 3 2 350
0 3 2 351
0 3 2 352
0 3 2 353
0 3 2 354
0 3 2 355
0 3 2 356
0 3 2 357
0 3 2 358
0 3 2 359
0 3 2 360
0 3 2 361
0 3 2 362
0 3 2 363
0 3 2 364
0 1 1 1
0 1 1 2
0 1 1 3
0 1 1 4
0 1 1 5
0 1 1 6
0 1 1 7
0 1 1 8
0 1 1 9
0 1 1 10
0 1 1 11
0 1 1 12
0 1 1 13
0 1 1 14
0 1 1 15
0 1 1 16
0 1 1 17
0 1 1 18
0 1 1 19
0 1 1 20
0 1 1 21
0 1 1 22
0 1 1 23
0 1 1 24
0 1 1 25
0 1 1 26
0 1 1 27
0 1 1 28
0 1 1 29
0 1 1 30
0 1 1 31
0 1 1 32
0 1 1 33
0 1 1 34
0 1 1 35
0 1 1 36
0 1 1 37
0 1 1 38
0 1 1 39
0 1 1 40
0 1 1 41
0 1 1 42
0 1 1 43
0 1 1 44
0 1 1 45
0 1 1 46
0 1 1 47
0 1 1 48
0 1 1 49
0 1 1 50
0 1 1 51
0 1 1 52
0 1 1 53
0 1 1 54
0 1 1 55
0 1 1 56
0 1 1 57
0 1 1 58
0 1 1 59
0 1 1 60
0 1 1 61
0 1 1 62
0 1 1 63
0 1 1 64
0 1 1 65
0 1 1 66
0 1 1 67
0 1 1 68
0 1 1 69
0 1 1 70
2 2 1 71
2 2 1 72
2 2 1 73
2 2 1 74
2 2 1 75
2 2 1 76
2 2 1 77
2 2 1 78
2 2 1 79
2 2 1 80
2 2 1 81
2 2 1 82
2 2 1 83
2 2 1 84
2 2 1 85
2 2 1 86
2 2 1 87
2 2 1 88
2 2 1 89
2 2 1 90
2 2 1 91
2 2 1 92
2 2 1 93
2 2 1 94
2 2 1 95
2 2 1 96
2 2 1 97
2 2 1 98
2 2 1 99
2 2 1 100
2 2 1 101
2 2 1 102
2 2 1 103
2 2 1 104
2 2 1 105
2 2 1 106
2 2 1 107
2 2 1 108
2 2 1 109
2 2 1 110
2 2 1 111
2 2 1 112
0 3 1 113
0 3 1 114
0 3 1 115
0 3 1 116
0 3 1 117
0 3 1 118
0 3 1 119
0 3 1 120
0 3 1 121
0 3 1 122
0 3 1 123
0 3 1 124
0 3 1 125
0 3 1 126
0 3 1 127
0 3 1 128
0 3 1 129
0 3 1 130
0 3 1 131
0 3 1 132
0 3 1 133
0 3 1 134
0 3 1 135
0 3 1 136
0 3 1 137
0 3 1 138
0 3 1 139
0 3 1 140
0 3 1 141
0 3 1 142
0 3 1 143
0 3 1 144
0 3 1 145
0 3 1 146
0 3 1 147
0 3 1 148
0 3 1 149
0 3 1 150
0 3 1 151
0 3 1 152
0 3 1 153
0 3 1 154
0 3 1 155
0 3 1 156
0 3 1 157
0 3 1 158
0 3 1 159
0 3 1 160
0 3 1 161
0 3 1 162
0 3 1 163
0 3 1 164
0 3 1 165
0 3 1 166
0 3 1 167
0 3 1 168
0 3 1 169
0 3 1 170
0 3 1 171
0 3 1 172
0 3 1 173
0 3 1 174
0 3 1 175
0 3 1 176
0 3 1 177
0 3 1 178
0 3 1 179
0 3 1 180
0 3 1 181
0 3 1 182
0 1 6 911
0 1 6 912
0 1 6 913
0 1 6 914
0 1 6 915
0 1 6 916
0 1 6 917
0 1 6 918
0 1 6 919
0 1 6 920
0 1 6 921
0 1 6 922
0 1 6 923
0 1 6 924
0 1 6 925
0 1 6 926
0 1 6 927
0 1 6 928
0 1 6 929
0 1 6 930
0 1 6 931
0 1 6 932
0 1 6 933
0 1 6 934
0 1 6 935
0 1 6 936
0 1 6 937
0 1 6 938
0 1 6 939
0 1 6 940
0 1 6 941
0 1 6 942
0 1 6 943
0 1 6 944
0 1 6 945
0 1 6 946
0 1 6 947
0 1 6 948
0 1 6 949
0 1 6 950
0 1 6 951
0 1 6 952
0 1 6 953
0 1 6 954
0 1 6 955
0 1 6 956
0 1 6 957
0 1 6 958
0 1 6 959
0 1 6 960
0 1 6 961
0 1 6 962
0 1 6 963
0 1 6 964
0 1 6 965
0 1 6 966
0 1 6 967
0 1 6 968
0 1 6 969
0 1 6 970
0 1 6 971
0 1 6 972
0 1 6 973
0 1 6 974
0 1 6 975
0 1 6 976
0 1 6 977
0 1 6 978
0 1 6 979
0 1 6 980
2 2 6 981
2 2 6 982
2 2 6 983
2 2 6 984
2 2 6 985
2 2 6 986
2 2 6 987
2 2 6 988
2 2 6 989
2 2 6 990
2 2 6 991
2 2 6 992
2 2 6 993
2 2 6 994
2 2 6 995
2 2 6 996
2 2 6 997
2 2 6 998
2 2 6 999
2 2 6 1000
2 2 6 1001
2 2 6 1002
2 2 6 1003
2 2 6 1004
2 2 6 1005
2 2 6 1006
2 2 6 1007
2 2 6 1008
2 2 6 1009
2 2 6 1010
2 2 6 1011
2 2 6 1012
2 2 6 1013
2 2 6 1014
2 2 6 1015
2 2 6 1016
2 2 6 1017
2 2 6 1018
2 2 6 1019
2 2 6 1020
2 2 6 1021
2 2 6 1022
0 3 6 1023
0 3 6 1024
0 3 6 1025
0 3 6 1026
0 3 6 1027
0 3 6 1028
0 3 6 1029
0 3 6 1030
0 3 6 1031
0 3 6 1032
0 3 6 1033
0 3 6 1034
0 3 6 1035
0 3 6 1036
0 3 6 1037
0 3 6 1038
0 3 6 1039
0 3 6 1040
0 3 6 1041
0 3 6 1042
0 3 6 1043
0 3 6 1044
0 3 6 1045
0 3 6 1046
0 3 6 1047
0 3 6 1048
0 3 6 1049
0 3 6 1050
0 3 6 1051
0 3 6 1052
0 3 6 1053
0 3 6 1054
0 3 6 1055
0 3 6 1056
0 3 6 1057
0 3 6 1058
0 3 6 1059
0 3 6 1060
0 3 6 1061
0 3 6 1062
0 3 6 1063
0 3 6 1064
0 3 6 1065
0 3 6 1066
0 3 6 1067
0 3 6 1068
0 3 6 1069
0 3 6 1070
0 3 6 1071
0 3 6 1072
0 3 6 1073
0 3 6 1074
0 3 6 1075
0 3 6 1076
0 3 6 1077
0 3 6 1078
0 3 6 1079
0 3 6 1080
0 3 6 1081
0 3 6 1082
0 3 6 1083
0 3 6 1084
0 3 6 1085
0 3 6 1086
0 3 6 1087
0 3 6 1088
0 3 6 1089
0 3 6 1090
0 3 6 1091
0 3 6 1092
0 1 10 1639
0 1 10 1640
0 1 10 1641
0 1 10 1642
0 1 10 1643
0 1 10 1644
0 1 10 1645
0 1 10 1646
0 1 10 1647
0 1 10 1648
0 1 10 1649
0 1 10 1650
0 1 10 1651
0 1 10 1652
0 1 10 1653
0 1 10 1654
0 1 10 1655
0 1 10 1656
0 1 10 1657
0 1 10 1658
0 1 10 1659
0 1 10 1660
0 1 10 1661
0 1 10 1662
0 1 10 1663
0 1 10 1664
0 1 10 1665
0 1 10 1666
0 1 10 1667
0 1 10 1668
0 1 10 1669
0 1 10 1670
0 1 10 1671
0 1 10 1672
0 1 10 1673
0 1 10 1674
0 1 10 1675
0 1 10 1676
0 1 10 1677
0 1 10 1678
0 1 10 1679
0 1 10 1680
0 1 10 1681
0 1 10 1682
0 1 10 1683
0 1 10 1684
0 1 10 1685
0 1 10 1686
0 1 10 1687
0 1 10 1688
0 1 10 1689
0 1 10 1690
0 1 10 1691
0 1 10 1692
0 1 10 1693
0 1 10 1694
0 1 10 1695
0 1 10 1696
0 1 10 1697
0 1 10 1698
0 1 10 1699
0 1 10 1700
0 1 10 1701
0 1 10 1702
0 1 10 1703
0 1 10 1704
0 1 10 1705
0 1 10 1706
0 1 10 1707
0 1 10 1708
1 2 10 1709
1 2 10 1710
1 2 10 1711
1 2 10 1712
1 2 10 1713
1 2 10 1714
1 2 10 1715
1 2 10 1716
1 2 10 1717
1 2 10 1718
1 2 10 1719
1 2 10 1720
1 2 10 1721
1 2 10 1722
1 2 10 1723
1 2 10 1724
1 2 10 1725
1 2 10 1726
1 2 10 1727
1 2 10 1728
1 2 10 1729
1 2 10 1730
1 2 10 1731
1 2 10 1732
1 2 10 1733
1 2 10 1734
1 2 10 1735
1 2 10 1736
1 2 10 1737
1 2 10 1738
1 2 10 1739
1 2 10 1740
1 2 10 1741
1 2 10 1742
1 2 10 1743
1 2 10 1744
1 2 10 1745
1 2 10 1746
1 2 10 1747
1 2 10 1748
1 2 10 1749
1 2 10 1750
0 3 10 1751
0 3 10 1752
0 3 10 1753
0 3 10 1754
0 3 10 1755
0 3 10 1756
0 3 10 1757
0 3 10 1758
0 3 10 1759
0 3 10 1760
0 3 10 1761
0 3 10 1762
0 3 10 1763
0 3 10 1764
0 3 10 1765
0 3 10 1766
0 3 10 1767
0 3 10 1768
0 3 10 1769
0 3 10 1770
0 3...
More Answers (1)
Walter Roberson
on 7 Oct 2023
sortrows specifying column 3 to sort on. The resulting matrix will group together all of the entries with the same trial-ID
5 Comments
the cyclist
on 7 Oct 2023
Edited: the cyclist
on 7 Oct 2023
@EK wrote "shuffle", not "sort", so I suspected that they might mean randomization, within each trial. But they may have meant sorting by trial.
Bruno Luong
on 8 Oct 2023
"shuffle matrix by trials Ids (column3)."
And in which way column3 matters in randomizing?
Dyuman Joshi
on 8 Oct 2023
@EK, Bruno's question was that in what way randomizing column 3 matters? What is the idea/logic behind randomizing?
See Also
Categories
Find more on Entering Commands in Help Center and File Exchange
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!An Error Occurred
Unable to complete the action because of changes made to the page. Reload the page to see its updated state.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)