Turning a complex function into 3d graph

11 views (last 30 days)
Beyza Nur
Beyza Nur on 15 Jan 2023
Commented: Beyza Nur on 15 Jan 2023
lambda= 0.1;
k= 2.*pi./lambda;
theta= 0:.01:2.*pi;
b= 4.*lambda;
r= 6.*lambda;
z= r.*cos(theta);
rho= r.*sin(theta);
f= (exp(-j.*k.*(z-(j.*b)))./(z-(j.*b)).*exp(j.*k.*sqrt(rho)./2.*(z-(j.*b)))).'
f =
1.0e-06 * 0.0000 + 0.0000i -0.0000 + 0.0000i -0.0001 + 0.0000i -0.0001 + 0.0000i -0.0001 - 0.0000i -0.0001 - 0.0001i -0.0001 - 0.0002i -0.0000 - 0.0002i 0.0000 - 0.0003i 0.0001 - 0.0003i 0.0002 - 0.0003i 0.0003 - 0.0003i 0.0005 - 0.0002i 0.0006 - 0.0001i 0.0006 + 0.0001i 0.0007 + 0.0002i 0.0007 + 0.0004i 0.0007 + 0.0007i 0.0006 + 0.0009i 0.0004 + 0.0011i 0.0002 + 0.0013i -0.0001 + 0.0015i -0.0005 + 0.0015i -0.0009 + 0.0015i -0.0013 + 0.0015i -0.0018 + 0.0013i -0.0022 + 0.0009i -0.0026 + 0.0005i -0.0029 - 0.0001i -0.0031 - 0.0007i -0.0031 - 0.0015i -0.0030 - 0.0023i -0.0026 - 0.0032i -0.0021 - 0.0040i -0.0013 - 0.0047i -0.0003 - 0.0052i 0.0009 - 0.0056i 0.0022 - 0.0058i 0.0036 - 0.0056i 0.0051 - 0.0051i 0.0065 - 0.0042i 0.0078 - 0.0029i 0.0089 - 0.0013i 0.0096 + 0.0006i 0.0099 + 0.0029i 0.0098 + 0.0053i 0.0090 + 0.0077i 0.0077 + 0.0102i 0.0057 + 0.0124i 0.0031 + 0.0142i 0.0000 + 0.0155i -0.0036 + 0.0162i -0.0074 + 0.0161i -0.0114 + 0.0150i -0.0153 + 0.0130i -0.0189 + 0.0099i -0.0219 + 0.0060i -0.0240 + 0.0012i -0.0252 - 0.0044i -0.0250 - 0.0103i -0.0235 - 0.0165i -0.0205 - 0.0225i -0.0159 - 0.0279i -0.0099 - 0.0325i -0.0027 - 0.0358i 0.0056 - 0.0375i 0.0145 - 0.0373i 0.0236 - 0.0350i 0.0325 - 0.0304i 0.0405 - 0.0237i 0.0471 - 0.0148i 0.0518 - 0.0041i 0.0541 + 0.0080i 0.0535 + 0.0209i 0.0498 + 0.0340i 0.0430 + 0.0465i 0.0329 + 0.0577i 0.0200 + 0.0667i 0.0047 + 0.0728i -0.0125 + 0.0754i -0.0306 + 0.0739i -0.0487 + 0.0680i -0.0658 + 0.0577i -0.0807 + 0.0431i -0.0923 + 0.0246i -0.0997 + 0.0030i -0.1019 - 0.0207i -0.0985 - 0.0454i -0.0891 - 0.0696i -0.0737 - 0.0919i -0.0527 - 0.1107i -0.0268 - 0.1247i 0.0028 - 0.1327i 0.0347 - 0.1335i 0.0672 - 0.1266i 0.0983 - 0.1117i 0.1261 - 0.0892i 0.1487 - 0.0596i 0.1643 - 0.0242i 0.1715 + 0.0152i 0.1690 + 0.0567i 0.1564 + 0.0979i 0.1337 + 0.1363i 0.1015 + 0.1694i 0.0609 + 0.1948i 0.0140 + 0.2104i -0.0369 + 0.2145i -0.0891 + 0.2062i -0.1393 + 0.1851i -0.1845 + 0.1516i -0.2216 + 0.1070i -0.2478 + 0.0532i -0.2607 - 0.0071i -0.2589 - 0.0705i -0.2414 - 0.1335i -0.2085 - 0.1920i -0.1612 - 0.2424i -0.1016 - 0.2810i -0.0327 - 0.3048i 0.0418 - 0.3115i 0.1177 - 0.2998i 0.1903 - 0.2694i 0.2550 - 0.2213i 0.3073 - 0.1575i 0.3436 - 0.0812i 0.3607 + 0.0035i 0.3568 + 0.0918i 0.3310 + 0.1783i 0.2841 + 0.2575i 0.2181 + 0.3244i 0.1362 + 0.3742i 0.0429 + 0.4032i -0.0564 + 0.4087i -0.1559 + 0.3895i -0.2492 + 0.3459i -0.3304 + 0.2798i -0.3939 + 0.1946i -0.4354 + 0.0949i -0.4515 - 0.0134i -0.4405 - 0.1238i -0.4023 - 0.2296i -0.3385 - 0.3240i -0.2526 - 0.4007i -0.1494 - 0.4546i -0.0349 - 0.4818i 0.0839 - 0.4801i 0.1996 - 0.4490i 0.3050 - 0.3900i 0.3933 - 0.3062i 0.4587 - 0.2026i 0.4969 - 0.0854i 0.5051 + 0.0383i 0.4825 + 0.1607i 0.4302 + 0.2742i 0.3514 + 0.3716i 0.2508 + 0.4468i 0.1346 + 0.4950i 0.0101 + 0.5131i -0.1152 + 0.5000i -0.2332 + 0.4564i -0.3367 + 0.3852i -0.4194 + 0.2910i -0.4761 + 0.1796i -0.5035 + 0.0581i -0.5002 - 0.0659i -0.4667 - 0.1846i -0.4054 - 0.2909i -0.3204 - 0.3782i -0.2173 - 0.4414i -0.1027 - 0.4771i 0.0161 - 0.4835i 0.1317 - 0.4608i 0.2372 - 0.4109i 0.3262 - 0.3375i 0.3938 - 0.2456i 0.4362 - 0.1412i 0.4516 - 0.0310i 0.4398 + 0.0781i 0.4021 + 0.1795i 0.3418 + 0.2674i 0.2631 + 0.3368i 0.1713 + 0.3841i 0.0724 + 0.4073i -0.0273 + 0.4057i -0.1220 + 0.3803i -0.2060 + 0.3336i -0.2748 + 0.2692i -0.3249 + 0.1915i -0.3541 + 0.1058i -0.3616 + 0.0175i -0.3477 - 0.0681i -0.3143 - 0.1461i -0.2642 - 0.2121i -0.2012 - 0.2629i -0.1296 - 0.2962i -0.0539 - 0.3109i 0.0211 - 0.3070i 0.0912 - 0.2858i 0.1524 - 0.2494i 0.2019 - 0.2007i 0.2372 - 0.1432i 0.2571 - 0.0807i 0.2615 - 0.0170i 0.2508 + 0.0440i 0.2266 + 0.0990i 0.1911 + 0.1452i 0.1470 + 0.1806i 0.0973 + 0.2037i 0.0452 + 0.2141i -0.0061 + 0.2118i -0.0538 + 0.1980i -0.0955 + 0.1740i -0.1292 + 0.1420i -0.1535 + 0.1043i -0.1677 + 0.0634i -0.1717 + 0.0217i -0.1661 - 0.0182i -0.1517 - 0.0543i -0.1301 - 0.0849i -0.1030 - 0.1086i -0.0723 - 0.1248i -0.0399 - 0.1329i -0.0078 - 0.1333i 0.0223 - 0.1264i 0.0488 - 0.1133i 0.0707 - 0.0951i 0.0870 - 0.0733i 0.0974 - 0.0493i 0.1018 - 0.0246i 0.1004 - 0.0007i 0.0938 + 0.0213i 0.0828 + 0.0404i 0.0683 + 0.0556i 0.0516 + 0.0667i 0.0335 + 0.0733i 0.0153 + 0.0754i -0.0020 + 0.0735i -0.0177 + 0.0679i -0.0311 + 0.0593i -0.0416 + 0.0484i -0.0490 + 0.0360i -0.0531 + 0.0230i -0.0542 + 0.0100i -0.0523 - 0.0023i -0.0480 - 0.0132i -0.0417 - 0.0224i -0.0338 - 0.0295i -0.0251 - 0.0344i -0.0160 - 0.0371i -0.0070 - 0.0376i 0.0014 - 0.0362i 0.0088 - 0.0331i 0.0150 - 0.0287i 0.0198 - 0.0234i 0.0231 - 0.0174i 0.0249 - 0.0113i 0.0252 - 0.0053i 0.0243 + 0.0003i 0.0223 + 0.0053i 0.0194 + 0.0094i 0.0159 + 0.0126i 0.0120 + 0.0147i 0.0080 + 0.0159i 0.0042 + 0.0162i 0.0005 + 0.0157i -0.0027 + 0.0145i -0.0053 + 0.0127i -0.0074 + 0.0105i -0.0089 + 0.0081i -0.0097 + 0.0057i -0.0100 + 0.0032i -0.0097 + 0.0010i -0.0090 - 0.0010i -0.0080 - 0.0027i -0.0067 - 0.0040i -0.0053 - 0.0050i -0.0039 - 0.0055i -0.0024 - 0.0058i -0.0011 - 0.0057i 0.0001 - 0.0053i 0.0012 - 0.0048i 0.0020 - 0.0041i 0.0026 - 0.0033i 0.0029 - 0.0025i 0.0031 - 0.0016i 0.0031 - 0.0009i 0.0029 - 0.0002i 0.0026 + 0.0004i 0.0023 + 0.0009i 0.0019 + 0.0012i 0.0014 + 0.0014i 0.0010 + 0.0015i 0.0006 + 0.0015i 0.0002 + 0.0015i -0.0001 + 0.0013i -0.0004 + 0.0011i -0.0005 + 0.0009i -0.0007 + 0.0007i -0.0007 + 0.0005i -0.0007 + 0.0003i -0.0007 + 0.0001i -0.0006 - 0.0001i -0.0005 - 0.0002i -0.0004 - 0.0003i -0.0002 - 0.0003i -0.0001 - 0.0003i -0.0000 - 0.0003i 0.0000 - 0.0002i 0.0001 - 0.0002i 0.0001 - 0.0001i 0.0001 - 0.0001i 0.0001 - 0.0000i 0.0001 + 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i -0.0001 - 0.0000i -0.0001 - 0.0001i -0.0001 - 0.0002i -0.0001 - 0.0003i -0.0000 - 0.0004i 0.0001 - 0.0006i 0.0002 - 0.0007i 0.0004 - 0.0009i 0.0007 - 0.0011i 0.0010 - 0.0012i 0.0015 - 0.0014i 0.0020 - 0.0015i 0.0026 - 0.0016i 0.0032 - 0.0017i 0.0040 - 0.0017i 0.0049 - 0.0017i 0.0059 - 0.0017i 0.0071 - 0.0017i 0.0083 - 0.0016i 0.0097 - 0.0015i 0.0113 - 0.0014i 0.0130 - 0.0014i 0.0149 - 0.0013i 0.0169 - 0.0013i 0.0192 - 0.0014i 0.0216 - 0.0017i 0.0243 - 0.0020i 0.0271 - 0.0026i 0.0301 - 0.0035i 0.0333 - 0.0047i 0.0366 - 0.0062i 0.0401 - 0.0082i 0.0436 - 0.0107i 0.0470 - 0.0139i 0.0504 - 0.0176i 0.0536 - 0.0221i 0.0565 - 0.0273i 0.0589 - 0.0333i 0.0606 - 0.0400i 0.0616 - 0.0476i 0.0616 - 0.0558i 0.0604 - 0.0646i 0.0578 - 0.0739i 0.0536 - 0.0835i 0.0478 - 0.0931i 0.0401 - 0.1024i 0.0304 - 0.1112i 0.0188 - 0.1190i 0.0053 - 0.1254i -0.0099 - 0.1300i -0.0268 - 0.1324i -0.0448 - 0.1321i -0.0636 - 0.1288i -0.0826 - 0.1222i -0.1012 - 0.1122i -0.1188 - 0.0985i -0.1344 - 0.0814i -0.1475 - 0.0610i -0.1572 - 0.0378i -0.1629 - 0.0124i -0.1639 + 0.0145i -0.1600 + 0.0419i -0.1508 + 0.0688i -0.1364 + 0.0940i -0.1170 + 0.1165i -0.0933 + 0.1351i -0.0660 + 0.1489i -0.0361 + 0.1570i -0.0050 + 0.1589i 0.0260 + 0.1543i 0.0554 + 0.1433i 0.0817 + 0.1263i 0.1037 + 0.1042i 0.1202 + 0.0779i 0.1304 + 0.0489i 0.1338 + 0.0187i 0.1303 - 0.0110i 0.1201 - 0.0386i 0.1042 - 0.0625i 0.0835 - 0.0816i 0.0595 - 0.0948i 0.0337 - 0.1016i 0.0079 - 0.1018i -0.0164 - 0.0959i -0.0376 - 0.0844i -0.0545 - 0.0685i -0.0663 - 0.0496i -0.0725 - 0.0292i -0.0731 - 0.0089i -0.0685 + 0.0100i -0.0594 + 0.0260i -0.0470 + 0.0384i -0.0326 + 0.0464i -0.0174 + 0.0499i -0.0027 + 0.0491i 0.0104 + 0.0445i 0.0208 + 0.0368i 0.0282 + 0.0271i 0.0321 + 0.0165i 0.0327 + 0.0060i 0.0304 - 0.0035i 0.0257 - 0.0113i 0.0194 - 0.0169i 0.0122 - 0.0201i 0.0051 - 0.0208i -0.0014 - 0.0195i -0.0067 - 0.0165i -0.0104 - 0.0124i -0.0125 - 0.0077i -0.0129 - 0.0031i -0.0119 + 0.0011i -0.0099 + 0.0043i -0.0072 + 0.0066i -0.0042 + 0.0077i -0.0013 + 0.0078i 0.0012 + 0.0070i 0.0030 + 0.0055i 0.0042 + 0.0038i 0.0047 + 0.0019i 0.0045 + 0.0002i 0.0038 - 0.0012i 0.0029 - 0.0021i 0.0017 - 0.0026i 0.0006 - 0.0027i -0.0003 - 0.0025i -0.0010 - 0.0020i -0.0014 - 0.0013i -0.0016 - 0.0006i -0.0015 - 0.0000i -0.0013 + 0.0004i -0.0009 + 0.0008i -0.0005 + 0.0009i -0.0001 + 0.0009i 0.0002 + 0.0008i 0.0004 + 0.0006i 0.0005 + 0.0003i 0.0005 + 0.0001i 0.0005 - 0.0001i 0.0004 - 0.0002i 0.0002 - 0.0003i 0.0001 - 0.0003i -0.0000 - 0.0003i -0.0001 - 0.0002i -0.0002 - 0.0001i -0.0002 - 0.0001i -0.0002 + 0.0000i -0.0001 + 0.0001i -0.0001 + 0.0001i -0.0000 + 0.0001i 0.0000 + 0.0001i 0.0000 + 0.0001i 0.0000 + 0.0000i 0.0001 + 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 - 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 + 0.0000i
this is the function and I use a few method for 3D graph but I can't get enough result for my project. I think someting is missing. I don't like my results. I used meshgrid and surf command but results not good. Can anyone help me this one? Thank you.
  9 Comments
Torsten
Torsten on 15 Jan 2023
Edited: Torsten on 15 Jan 2023
lambda= 0.1;
k= 2*pi/lambda;
theta= 0:.01:2*pi;
b= 4*lambda;
r= 6*lambda;
z= r*cos(theta);
rho= (r*sin(theta)).';
f= exp(-j.*k.*(z-(j.*b)))./(z-(j.*b)).*exp(j.*k.*sqrt(rho)./2.*(z-(j.*b)));
surf(z,rho,abs(f),"edgecolor","none")
Beyza Nur
Beyza Nur on 15 Jan 2023
okey, thank you for your concern. If I get different information I will update this question.

Sign in to comment.

Answers (0)

Categories

Find more on Polar Plots in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!