How to model a time series data with a custom function?
2 views (last 30 days)
Show older comments
Ana María Malagón Leal
on 21 Dec 2022
I'm trying to fit an ex-gaussian function to a time series of data. I tried to use the fit function of MATLAB. I don't know what I'm doing wrong, I'm not finding the best fitting parameters of my function.
Here is my code and an image of the results (plot on the right).
% Ex-Gaussian model
exGaussian = @(mu,sigma,tau,a0,a1,time) a0 + a1/2 .* exp((1./(2*tau)) .* (2.*mu+(sigma.^2./tau)-(2.*time))).*...
erfc((mu+(sigma.^2./tau)-time)./sqrt(2*sigma));
Fs = 20; %sampling frecuency
t = 0:1/Fs:5; %timestamp in seconds
%Parameters for the example data to fit
mu = 2;
sigma = .1;
tau = 1;
a0 = 1;
a1 = 19;
%Example data
y = exGaussian(mu,sigma,tau,a0,a1,t);
figure(1),clf
subplot(1,2,1)
plot(t, y), grid off
title('Example of data')
% Select the options to fit the model
opts = fitoptions('Method','NonlinearLeastSquares',...
'Lower',[0 0 0 5 10],'Upper',[10 2 10 30 50],...
'Startpoint',[1 0.1 0.1 1 1]);
exGfit = fittype('exGaussian(mu,sigma,tau,a0,a1,t)',...
'coefficients',{'mu','sigma','tau','a0','a1'},...
'independent','t','options',opts);
subplot(1,2,2)
[fitResult, fitStats, fitInfo] = fit(t',y',exGfit);
plot(fitResult,'-r',t,y,'.-b');
1 Comment
Walter Roberson
on 22 Dec 2022
Guassians are difficult to fit -- some of the parameters need to be pretty close to the correct value or else you are very likely to get results that are no-where near correct.
That said, in this case it doesn't even do a great job when given the actual parameters as the starting point :(
% Ex-Gaussian model
exGaussian = @(mu,sigma,tau,a0,a1,time) a0 + a1/2 .* exp((1./(2*tau)) .* (2.*mu+(sigma.^2./tau)-(2.*time))).*...
erfc((mu+(sigma.^2./tau)-time)./sqrt(2*sigma));
Fs = 20; %sampling frecuency
t = 0:1/Fs:5; %timestamp in seconds
%Parameters for the example data to fit
mu = 2;
sigma = .1;
tau = 1;
a0 = 1;
a1 = 19;
%Example data
y = exGaussian(mu,sigma,tau,a0,a1,t);
figure(1),clf
subplot(1,2,1)
plot(t, y), grid off
title('Example of data')
% Select the options to fit the model
opts = fitoptions('Method','NonlinearLeastSquares',...
'Lower',[0 0 0 5 10],'Upper',[10 2 10 30 50],...
'Startpoint',[mu, sigma, tau, a0, a1]);
exGfit = fittype(exGaussian,...
'coefficients',{'mu','sigma','tau','a0','a1'},...
'independent','time','options',opts);
subplot(1,2,2)
[fitResult, fitStats, fitInfo] = fit(t',y',exGfit)
plot(fitResult,'-r',t,y,'.-b');
Accepted Answer
Mathieu NOE
on 24 Dec 2022
hello
a quick and dirty trial with the poor's man solution ( with fminsearch)
the only trick to avoid an error (because with negative sigma, sqrt(sigma) is complex), I modified the function :
sqrt(2*abs(sigma)))
not 100% scientific maybe regarding optimizer usage, but it's seems to work not too bad
made a few trials with different IC, not all will give a good fit but with a liitle effort we can probably refine the IC range
% Ex-Gaussian model
exGaussian = @(mu,sigma,tau,a0,a1,time) a0 + a1/2 .* exp((1./(2*tau)) .* (2.*mu+(sigma.^2./tau)-(2.*time))).*...
erfc((mu+(sigma.^2./tau)-time)./sqrt(2*abs(sigma)));
Fs = 20; %sampling frecuency
t = 0:1/Fs:5; %timestamp in seconds
%Parameters for the example data to fit
mu = 2;
sigma = .1;
tau = 1;
a0 = 1;
a1 = 19;
%Example data
y = exGaussian(mu,sigma,tau,a0,a1,t);
figure(1),clf
plot(t, y), grid off
title('Example of data')
% curve fit using fminsearch
obj_fun = @(p) norm(exGaussian(p(1),p(2),p(3),p(4),p(5),t)-y);
p0 = [0.5 0.01 0.5 y(1) max(y)]; % IC guess for mu,sigma,tau,a0,a1
sol = fminsearch(obj_fun, p0);
yfit = exGaussian(sol(1),sol(2),sol(3),sol(4),sol(5), t);
plot(t,yfit,'-',t,y,'r .','MarkerSize', 20);
title('Data', 'FontSize', 20)
ylabel('Amplitude', 'FontSize', 20)
xlabel('t', 'FontSize', 20)
legend('curve fit','raw data');
2 Comments
More Answers (1)
Prateek
on 9 Jan 2023
Hi Ana,
A good way to fit ex-Gaussian function is to use the "interpolant" option in the curve fitting toolbox. I was able to obtain a good fit for the data providede by you:
Hope this helps.
Prateek
0 Comments
See Also
Categories
Find more on Linear and Nonlinear Regression in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!