initial point is a local minimum. Optimization completed because the size of the gradient at the initial point is less than the default value of the function tolerance.
27 views (last 30 days)
Show older comments
I just found the result not the optimum and the parameters obtained are always the initial ones.
global c
xdata = [0
1
2
3
4
5
6
7
8
9
10
15
20
25
30
35
40
45
50
55
60
70
80
90
120
500
1000
10000
30000];
ydata = [0
NaN
NaN
NaN
NaN
1.34288
NaN
NaN
NaN
NaN
1.43759
NaN
NaN
1.59058
1.59786
1.60515
1.60515
1.55415
1.54687
1.58329
NaN
1.64886
1.72171
1.72171
1.72171
NaN
NaN
NaN
NaN];
xdata0 = xdata;
ydata0 = ydata;
i = ismissing(ydata);
xdata(i) = [];
ydata(i) = [];
x = xdata0(1:end-4);
y = spline(xdata,ydata,x);
plot(xdata,ydata,'o')
hold on
plot(x,y,'LineWidth',2)
figure
rng(1997)
a = 0;
b = 10;
r = a + (b-a).*rand(6,1);
% r = 10*ones(10,1);
c = r;
options = optimoptions('lsqcurvefit',...
'Algorithm','levenberg-marquardt',...
'FunctionTolerance',1e-20,...
'StepTolerance',1e-20,...
'OptimalityTolerance',1e-20,...
'FiniteDifferenceStepSize',1e-20,...
'FiniteDifferenceType','central',...
'Display','iter');
lb = [];
ub = [];
coeffs = lsqcurvefit(@fitting,r,x,y,lb,ub,options);
c = coeffs;
figure
plot(xdata,ydata,'o')
hold on
xpredict = linspace(0,max(xdata),1000);
ypredict = fitting(coeffs,xpredict);
ypred=fitting(coeffs,x);
p=0;
min=5;
for b=0:0.01:1
r = a + (b-a).*rand(6,1);
% r = 10*ones(10,1);
c = r;
options = optimoptions('lsqcurvefit',...
'Algorithm','levenberg-marquardt',...
'FunctionTolerance',1e-20,...
'StepTolerance',1e-20,...
'OptimalityTolerance',1e-20,...
'FiniteDifferenceStepSize',1e-20,...
'FiniteDifferenceType','central',...
'Display','iter');
lb = [];
ub = [];
coeffs = lsqcurvefit(@fitting,r,x,y,lb,ub,options);
c = coeffs;
figure
plot(xdata,ydata,'o')
hold on
xpredict = linspace(0,max(xdata),1000);
ypredict = fitting(coeffs,xpredict);
ypred=fitting(coeffs,x);
if sum((y-ypred).^2,2)<=min
min=sum((y-ypred).^2,2)
p=b;
end
end
b=p;
r = a + (b-a).*rand(6,1);
% r = 10*ones(10,1);
c = r;
options = optimoptions('lsqcurvefit',...
'Algorithm','levenberg-marquardt',...
'FunctionTolerance',1e-20,...
'StepTolerance',1e-20,...
'OptimalityTolerance',1e-20,...
'FiniteDifferenceStepSize',1e-20,...
'FiniteDifferenceType','central',...
'Display','iter');
lb = [];
ub = [];
coeffs = lsqcurvefit(@fitting,r,x,y,lb,ub,options);
c = coeffs;
figure
plot(xdata,ydata,'o')
hold on
xpredict = linspace(0,max(xdata),1000);
ypredict = fitting(coeffs,xpredict);
plot(xpredict,ypredict,'-x','LineWidth',2)
% xlim([0 20])
function ytotal = fitting(c,t)
tspan = t;
y0 = zeros(2,1);
[~,ys] = ode45(@myodes, tspan, y0)
ytotal = ys(:,1).*(1+c(2)) + ys(:,2) + c(3).*ys(:,2).*(1.5-ys(:,1).*(1+c(2)))./(1+c(3).*ys(:,2))
end
function dydt = myodes(t,y)
global c
dydt = zeros(2,1);
dydt(1) = c(1) .* (2.5 - (1 + c(2)) .* y(1) - y(2) - c(3) .* y(2) .* (1.5 - y(1) .* (1 + c(2))) ./ (1 + c(3) .* y(2))) .* (1.5 - y(1) .* (1 + c(2))) ./ (1 + c(3) .* y(2)) - c(4) .* y(1);
dydt(2) = c(5) .* (2.5 - (1 + c(2)) .* y(1) - y(2) - c(3) .* y(2) .* (1.5 - y(1) .* (1 + c(2))) ./ (1 + c(3) .* y(2))) .* (1.5 - y(2) - c(3) .* y(2) .* (1.5 - y(1) .* (1 + c(2))) ./ (1 + c(3) .* y(2))) - c(6) .* y(2);
end
4 Comments
Answers (1)
Matt J
on 30 Nov 2022
Edited: Matt J
on 30 Nov 2022
I suspect your FiniteDifferenceStepSize is too small. Be mindful of the guidelines for Optimizing Differential Equations.
2 Comments
Matt J
on 30 Nov 2022
'local minimum possible' means the solver might have succeeded. The exitflag would give a clearer picture of why the optimization stopped, though.
See Also
Categories
Find more on Logical in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!