logm and expm function

3 views (last 30 days)
mingcheng nie
mingcheng nie on 13 Sep 2022
Edited: Torsten on 13 Sep 2022
Hi there,
%If we consider a diagnal matrix defined as:
delta=diag(exp(1i*2*pi*(0:10)/11));
%and we define another matrix C as:
C=diag(1i*2*pi*(0:10)/11);
%so, if we compute this:
D=logm(delta);
%D should be equal to C, right? but the result is not, part of elements in D is equal to C but not all of them. I can't fix this issue.
Many thanks to you!
Charlie
  2 Comments
Dyuman Joshi
Dyuman Joshi on 13 Sep 2022
Edited: Dyuman Joshi on 13 Sep 2022
Edit - Check Walter Roberson's answer for more details on the question.
In your matrix delta, all terms except for the diagonal terms are 0. And thus using logm() would not be ideal.
delta=diag(exp(1i*2*pi*(0:10)))
delta =
1.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 1.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 1.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 1.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 1.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 1.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 1.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 1.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 1.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 1.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 1.0000 - 0.0000i
Though you can use expm() on C and compare it with delta
C=diag(1i*2*pi*(0:10));
D=expm(C);
isequal(delta,D)
ans = logical
1
mingcheng nie
mingcheng nie on 13 Sep 2022
thank you for your answer, I make sense now!

Sign in to comment.

Accepted Answer

Walter Roberson
Walter Roberson on 13 Sep 2022
The problem you are running into is that you are assuming that log(exp(X)) == X for all X. However, that is only true for real numbers. For complex numbers, with the sin() going on, values are mapped to the primary branch. exp(2i*pi*N) for integer N is going to involve 1i*sin(2*pi*N) which is going to have a complex part of 0 for all integer N.
format long g
Pi = sym(pi);
%If we consider a diagnal matrix defined as:
delta = diag(exp(1i*2*Pi*(0:10)))
delta = 
%and we define another matrix C as:
C = diag(1i*2*Pi*(0:10))
C = 
%so, if we compute this:
D=logm(delta)
D = 
C - D
ans = 
  7 Comments
mingcheng nie
mingcheng nie on 13 Sep 2022
what if we set
delta=diag(exp(1i*2*pi*(0:10)/11));
then
C=diag(1i*2*pi*(0:10)/11);
as delta vary from 0 to 10/11, we might not get the N is integer, so I think the expm(C) == delta right?
Torsten
Torsten on 13 Sep 2022
Edited: Torsten on 13 Sep 2022
expm(diag(v)) = diag(exp(v))
for every vector v.
Here, you have no restrictions.
v = [log(675) log(i) log(-8)];
expm(diag(v))
ans =
1.0e+02 * 6.7500 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0100i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0800 + 0.0000i
diag(exp(v))
ans =
1.0e+02 * 6.7500 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0100i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0800 + 0.0000i

Sign in to comment.

More Answers (0)

Categories

Find more on Linear Algebra in Help Center and File Exchange

Products


Release

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!