How can i solve this cost function?
12 views (last 30 days)
Show older comments
Hi,
I have a cost function which includes vectors and matrices:
v = [(1 / (0.47 * 0.94 * 1500)^2) (1 / (0.47 * 0.94 * 1700)^2) (1 / (0.47 * 0.94 * 2000)^2) (1 / (0.47 * 0.94 * 2200)^2)];
delta = diag(v);
nu = transpose([120 340]);
K = [((1.95 / (2*0.47)) .* [-1 1 -1 1]);...
1 1 1 1 ];
zeta = [2 0; 0 1];
%J = transpose(q) * delta * q + (transpose(K*q - nu)) * zeta * (K*q - nu) %Cost function
%q = transpose([X Y Z T]) %Output of cost function
I am trying to find q vector without any constraint. What kind of methods can be used to solve related equation?
Thanks,
8 Comments
Accepted Answer
Matt J
on 29 Jun 2022
v = [(1 / (0.47 * 0.94 * 1500)^2) (1 / (0.47 * 0.94 * 1700)^2) (1 / (0.47 * 0.94 * 2000)^2) (1 / (0.47 * 0.94 * 2200)^2)];
delta = diag(v);
nu = transpose([120 340]);
K = [((1.95 / (2*0.47)) .* [-1 1 -1 1]);...
1 1 1 1 ];
zeta = [2 0; 0 1];
q=optimvar('q',4,1);
J=transpose(q) * delta * q + (transpose(K*q - nu)) * zeta * (K*q - nu);
sol=solve(optimproblem('Objective',J));
q=sol.q
More Answers (1)
Sam Chak
on 29 Jun 2022
Hi @Volcano
I converted the matrix equation into a scalar equation. Since there is no constraint, fminunc() is used and the local minimum is found.
v = [(1 / (0.47 * 0.94 * 1500)^2) (1 / (0.47 * 0.94 * 1700)^2) (1 / (0.47 * 0.94 * 2000)^2) (1 / (0.47 * 0.94 * 2200)^2)];
delta = diag(v);
nu = transpose([120 340]);
K = [((1.95 / (2*0.47)) .* [-1 1 -1 1]); 1 1 1 1];
zeta = [2 0; 0 1];
% Cost function
J = @(q) v(1)*q(1).^2 + v(2)*q(2).^2 + v(3)*q(3).^2 + v(4)*q(4).^2 + zeta(1,1)*(K(1,1)*q(1) + K(1,2)*q(2) + K(1,3)*q(3) + K(1,4)*q(4) - nu(1)).^2 + zeta(2,2)*(K(2,1)*q(1) + K(2,2)*q(2) + K(2,3)*q(3) + K(2,4)*q(4) - nu(2)).^2;
% Initial guess of q solution
q0 = [1 1 1 1];
% Minimize unconstrained multivariable function
[q, fval] = fminunc(J, q0)
4 Comments
Matt J
on 29 Jun 2022
Edited: Matt J
on 29 Jun 2022
It doesn't seem possible that it is a local minimum, because it is a convex problem. Possibly, fminunc's finite difference approximations to the gradient, or maybe the optimoption defaults, led to incomplete convergence. quadprog doesn't rely on approximate gradients, so it wouldn't have that difficulty to overcome.
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!