How can i solve this cost function?

12 views (last 30 days)
Volcano
Volcano on 29 Jun 2022
Commented: Sam Chak on 29 Jun 2022
Hi,
I have a cost function which includes vectors and matrices:
v = [(1 / (0.47 * 0.94 * 1500)^2) (1 / (0.47 * 0.94 * 1700)^2) (1 / (0.47 * 0.94 * 2000)^2) (1 / (0.47 * 0.94 * 2200)^2)];
delta = diag(v);
nu = transpose([120 340]);
K = [((1.95 / (2*0.47)) .* [-1 1 -1 1]);...
1 1 1 1 ];
zeta = [2 0; 0 1];
%J = transpose(q) * delta * q + (transpose(K*q - nu)) * zeta * (K*q - nu) %Cost function
%q = transpose([X Y Z T]) %Output of cost function
I am trying to find q vector without any constraint. What kind of methods can be used to solve related equation?
Thanks,
  8 Comments
Volcano
Volcano on 29 Jun 2022
@Sam Chak Yes, it is 2*2 matrix. Do you think there is a mistake in formulation?
Volcano
Volcano on 29 Jun 2022
@Sam Chak sorry, but what is LMI?
There should be optimal q vector which minimize J.

Sign in to comment.

Accepted Answer

Matt J
Matt J on 29 Jun 2022
v = [(1 / (0.47 * 0.94 * 1500)^2) (1 / (0.47 * 0.94 * 1700)^2) (1 / (0.47 * 0.94 * 2000)^2) (1 / (0.47 * 0.94 * 2200)^2)];
delta = diag(v);
nu = transpose([120 340]);
K = [((1.95 / (2*0.47)) .* [-1 1 -1 1]);...
1 1 1 1 ];
zeta = [2 0; 0 1];
q=optimvar('q',4,1);
J=transpose(q) * delta * q + (transpose(K*q - nu)) * zeta * (K*q - nu);
sol=solve(optimproblem('Objective',J));
Solving problem using quadprog. Minimum found that satisfies the constraints. Optimization completed because the objective function is non-decreasing in feasible directions, to within the value of the optimality tolerance, and constraints are satisfied to within the value of the constraint tolerance.
q=sol.q
q = 4×1
50.7877 74.3710 90.2892 124.5521

More Answers (1)

Sam Chak
Sam Chak on 29 Jun 2022
I converted the matrix equation into a scalar equation. Since there is no constraint, fminunc() is used and the local minimum is found.
v = [(1 / (0.47 * 0.94 * 1500)^2) (1 / (0.47 * 0.94 * 1700)^2) (1 / (0.47 * 0.94 * 2000)^2) (1 / (0.47 * 0.94 * 2200)^2)];
delta = diag(v);
nu = transpose([120 340]);
K = [((1.95 / (2*0.47)) .* [-1 1 -1 1]); 1 1 1 1];
zeta = [2 0; 0 1];
% Cost function
J = @(q) v(1)*q(1).^2 + v(2)*q(2).^2 + v(3)*q(3).^2 + v(4)*q(4).^2 + zeta(1,1)*(K(1,1)*q(1) + K(1,2)*q(2) + K(1,3)*q(3) + K(1,4)*q(4) - nu(1)).^2 + zeta(2,2)*(K(2,1)*q(1) + K(2,2)*q(2) + K(2,3)*q(3) + K(2,4)*q(4) - nu(2)).^2;
% Initial guess of q solution
q0 = [1 1 1 1];
% Minimize unconstrained multivariable function
[q, fval] = fminunc(J, q0)
Local minimum found. Optimization completed because the size of the gradient is less than the value of the optimality tolerance.
q = 1×4
70.5372 99.4606 70.5396 99.4624
fval = 0.0457
  4 Comments
Matt J
Matt J on 29 Jun 2022
Edited: Matt J on 29 Jun 2022
It doesn't seem possible that it is a local minimum, because it is a convex problem. Possibly, fminunc's finite difference approximations to the gradient, or maybe the optimoption defaults, led to incomplete convergence. quadprog doesn't rely on approximate gradients, so it wouldn't have that difficulty to overcome.
Sam Chak
Sam Chak on 29 Jun 2022
Thanks @Matt J for the explanations. I learned something new today.

Sign in to comment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!