curve generation plot for given pdf

1 view (last 30 days)
Kundan Prasad
Kundan Prasad on 14 Dec 2021
Commented: Kundan Prasad on 15 Dec 2021
I am not able to generate the curve of FIg.5 as per attached pdf or given link below
I am trying to replicate the same but having some problem. Please solve the same
Thank you
clear all
clc
for i=1:2
alpha(i)= (pi*22)/180;
beta(i)= atan(cos(alpha(i))*sin(gamma(i))./(1+sin(alpha(i))*sin(gamma(i))));
end
R=0.4;
t(1)= R*cos(alpha(1))./cot(alpha(1)+beta(1));
t(2)= R*cos(alpha(2))./cot(alpha(2)+beta(2));
n_1=1.49;
theta_1= asin(n_1.*sin(alpha(1)))-alpha(1);
T=0.2;
H_1=0.1;
t(3)= (H_1-t(1)*(tan(alpha(1))-cot(theta_1)))./(cot(theta_1)-tan(alpha(2)));
t(4)= (t(2)*(tan(alpha(2))-cot(theta_1))+.....
T*(tan(alpha(1))-tan(alpha(2)))-H_1)./(tan(alpha(1))-cot(theta_1));
h_1=(T-t(1)-t(4))*tan(alpha(1));
h_2=(T-t(3)-t(2))*tan(alpha(2));
n_2=1.49;
lamda_min=0.004;
lamda_max=0.007;
phase= h_1*(n_1 -1)./(lamda_min)+ h_2*(n_2-1)./(lamda_min);
e1= (sin(pi*((1-(phase/2*pi))))/(pi*((1-(phase/2*pi)))))^2;
e2= (sin(pi*(t(1)/T))/(pi*(t(1)/T)))^2;
e3= (sin(pi*(t(2)/T))/(pi*(t(2)/T)))^2;
e4= (sin(pi*(t(3)/T))/(pi*(t(3)/T)))^2;
e5= (sin(pi*(t(4)/T))/(pi*(t(4)/T)))^2;
x=0.001;
f=0.025;
syms x
b= int(R-sqrt(R.^2-x.^2),0, f);
c=sqrt((1/f)*b);
e6= exp(((-4*pi*c)/lamda_min).^8);
effic= e1*e2*e3*e4*e5*e6;
syms lamda
pide=int(e1*e2*e3*e4*e5, lamda_min,lamda_max);
fpide= (1/(lamda_max-lamda_min))*pide;
  1 Comment
Kundan Prasad
Kundan Prasad on 15 Dec 2021
please have a look into matlab code once.
I have attached the image of plot which is need to be obtained
Thank you

Sign in to comment.

Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!