sech
Symbolic hyperbolic secant function
Syntax
Description
Examples
Hyperbolic Secant Function for Numeric and Symbolic Arguments
Depending on its arguments, sech
returns
floating-point or exact symbolic results.
Compute the hyperbolic secant function for these numbers. Because these numbers
are not symbolic objects, sech
returns floating-point
results.
A = sech([-2, -pi*i, pi*i/6, 0, pi*i/3, 5*pi*i/7, 1])
A = 0.2658 -1.0000 1.1547 1.0000 2.0000 -1.6039 0.6481
Compute the hyperbolic secant function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, sech
returns
unresolved symbolic calls.
symA = sech(sym([-2, -pi*i, pi*i/6, 0, pi*i/3, 5*pi*i/7, 1]))
symA = [ 1/cosh(2), -1, (2*3^(1/2))/3, 1, 2, -1/cosh((pi*2i)/7), 1/cosh(1)]
Use vpa
to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ 0.26580222883407969212086273981989,... -1.0,... 1.1547005383792515290182975610039,... 1.0,... 2.0,... -1.6038754716096765049444092780298,... 0.64805427366388539957497735322615]
Plot Hyperbolic Secant Function
Plot the hyperbolic secant function on the interval from -10 to 10.
syms x fplot(sech(x),[-10, 10]) grid on
Handle Expressions Containing Hyperbolic Secant Function
Many functions, such as diff
,
int
, taylor
, and
rewrite
, can handle expressions containing
sech
.
Find the first and second derivatives of the hyperbolic secant function:
syms x diff(sech(x), x) diff(sech(x), x, x)
ans = -sinh(x)/cosh(x)^2 ans = (2*sinh(x)^2)/cosh(x)^3 - 1/cosh(x)
Find the indefinite integral of the hyperbolic secant function:
int(sech(x), x)
ans = 2*atan(exp(x))
Find the Taylor series expansion of sech(x)
:
taylor(sech(x), x)
ans = (5*x^4)/24 - x^2/2 + 1
Rewrite the hyperbolic secant function in terms of the exponential function:
rewrite(sech(x), 'exp')
ans = 1/(exp(-x)/2 + exp(x)/2)
Input Arguments
Version History
Introduced before R2006a