coth
Symbolic hyperbolic cotangent function
Syntax
Description
Examples
Hyperbolic Cotangent Function for Numeric and Symbolic Arguments
Depending on its arguments, coth
returns
floating-point or exact symbolic results.
Compute the hyperbolic cotangent function for these numbers. Because these numbers are
not symbolic objects, coth
returns floating-point results.
A = coth([-2, -pi*i/3, pi*i/6, 5*pi*i/7, 3*pi*i/2])
A = -1.0373 + 0.0000i 0.0000 + 0.5774i 0.0000 - 1.7321i... 0.0000 + 0.7975i 0.0000 - 0.0000i
Compute the hyperbolic cotangent function for the numbers converted to symbolic objects.
For many symbolic (exact) numbers, coth
returns unresolved symbolic
calls.
symA = coth(sym([-2, -pi*i/3, pi*i/6, 5*pi*i/7, 3*pi*i/2]))
symA = [ -coth(2), (3^(1/2)*1i)/3, -3^(1/2)*1i, -coth((pi*2i)/7), 0]
Use vpa
to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ -1.0373147207275480958778097647678,... 0.57735026918962576450914878050196i,... -1.7320508075688772935274463415059i,... 0.79747338888240396141568825421443i,... 0]
Plot Hyperbolic Cotangent Function
Plot the hyperbolic cotangent function on the interval from -10 to 10.
syms x fplot(coth(x),[-10 10]) grid on
Handle Expressions Containing Hyperbolic Cotangent Function
Many functions, such as diff
,
int
, taylor
, and rewrite
,
can handle expressions containing coth
.
Find the first and second derivatives of the hyperbolic cotangent function:
syms x diff(coth(x), x) diff(coth(x), x, x)
ans = 1 - coth(x)^2 ans = 2*coth(x)*(coth(x)^2 - 1)
Find the indefinite integral of the hyperbolic cotangent function:
int(coth(x), x)
ans = log(sinh(x))
Find the Taylor series expansion of coth(x)
around x =
pi*i/2
:
taylor(coth(x), x, pi*i/2)
ans = x - (pi*1i)/2 - (x - (pi*1i)/2)^3/3 + (2*(x - (pi*1i)/2)^5)/15
Rewrite the hyperbolic cotangent function in terms of the exponential function:
rewrite(coth(x), 'exp')
ans = (exp(2*x) + 1)/(exp(2*x) - 1)
Input Arguments
Version History
Introduced before R2006a