optimoptions
Create optimization options
Syntax
Description
returns a set of default options for the options
= optimoptions(SolverName
)SolverName
solver.
returns options
= optimoptions(SolverName
,Name,Value
)options
with specified parameters set using one or
more name-value pair arguments.
returns a copy of options
= optimoptions(oldoptions
,Name,Value
)oldoptions
with the named parameters
altered with the specified values.
returns default options for the options
= optimoptions(SolverName
,oldoptions
)SolverName
solver, and copies
the applicable options in oldoptions
to
options
.
Examples
Create Default Options
Create default options for the fmincon
solver.
options = optimoptions('fmincon')
options = fmincon options: Options used by current Algorithm ('interior-point'): (Other available algorithms: 'active-set', 'sqp', 'sqp-legacy', 'trust-region-reflective') Set properties: No options set. Default properties: Algorithm: 'interior-point' BarrierParamUpdate: 'monotone' ConstraintTolerance: 1.0000e-06 Display: 'final' EnableFeasibilityMode: 0 FiniteDifferenceStepSize: 'sqrt(eps)' FiniteDifferenceType: 'forward' HessianApproximation: 'bfgs' HessianFcn: [] HessianMultiplyFcn: [] HonorBounds: 1 MaxFunctionEvaluations: 3000 MaxIterations: 1000 ObjectiveLimit: -1.0000e+20 OptimalityTolerance: 1.0000e-06 OutputFcn: [] PlotFcn: [] ScaleProblem: 0 SpecifyConstraintGradient: 0 SpecifyObjectiveGradient: 0 StepTolerance: 1.0000e-10 SubproblemAlgorithm: 'factorization' TypicalX: 'ones(numberOfVariables,1)' UseParallel: 0 Options not used by current Algorithm ('interior-point') Default properties: FunctionTolerance: 1.0000e-06
Create Nondefault Options
Set options for fmincon
to use the sqp
algorithm and at most 1500 iterations.
options = optimoptions(@fmincon,'Algorithm','sqp','MaxIterations',1500)
options = fmincon options: Options used by current Algorithm ('sqp'): (Other available algorithms: 'active-set', 'interior-point', 'sqp-legacy', 'trust-region-reflective') Set properties: Algorithm: 'sqp' MaxIterations: 1500 Default properties: ConstraintTolerance: 1.0000e-06 Display: 'final' FiniteDifferenceStepSize: 'sqrt(eps)' FiniteDifferenceType: 'forward' MaxFunctionEvaluations: '100*numberOfVariables' ObjectiveLimit: -1.0000e+20 OptimalityTolerance: 1.0000e-06 OutputFcn: [] PlotFcn: [] ScaleProblem: 0 SpecifyConstraintGradient: 0 SpecifyObjectiveGradient: 0 StepTolerance: 1.0000e-06 TypicalX: 'ones(numberOfVariables,1)' UseParallel: 0 Options not used by current Algorithm ('sqp') Default properties: BarrierParamUpdate: 'monotone' EnableFeasibilityMode: 0 FunctionTolerance: 1.0000e-06 HessianApproximation: 'not applicable' HessianFcn: [] HessianMultiplyFcn: [] HonorBounds: 1 SubproblemAlgorithm: 'factorization'
Update Options
Update existing options with new values.
Set options for the lsqnonlin
solver to use the levenberg-marquardt
algorithm and at most 1500 function evaluations
oldoptions = optimoptions(@lsqnonlin,'Algorithm','levenberg-marquardt',... 'MaxFunctionEvaluations',1500)
oldoptions = lsqnonlin options: Options used by current Algorithm ('levenberg-marquardt'): (Other available algorithms: 'interior-point', 'trust-region-reflective') Set properties: Algorithm: 'levenberg-marquardt' MaxFunctionEvaluations: 1500 Default properties: Display: 'final' FiniteDifferenceStepSize: 'sqrt(eps)' FiniteDifferenceType: 'forward' FunctionTolerance: 1.0000e-06 MaxIterations: 400 OutputFcn: [] PlotFcn: [] SpecifyObjectiveGradient: 0 StepTolerance: 1.0000e-06 TypicalX: 'ones(numberOfVariables,1)' UseParallel: 0 Options not used by current Algorithm ('levenberg-marquardt') Default properties: BarrierParamUpdate: 'monotone' ConstraintTolerance: 1.0000e-06 JacobianMultiplyFcn: [] OptimalityTolerance: 1.0000e-06 SpecifyConstraintGradient: 0 SubproblemAlgorithm: 'factorization'
Increase MaxFunctionEvaluations
to 2000.
options = optimoptions(oldoptions,'MaxFunctionEvaluations',2000)
options = lsqnonlin options: Options used by current Algorithm ('levenberg-marquardt'): (Other available algorithms: 'interior-point', 'trust-region-reflective') Set properties: Algorithm: 'levenberg-marquardt' MaxFunctionEvaluations: 2000 Default properties: Display: 'final' FiniteDifferenceStepSize: 'sqrt(eps)' FiniteDifferenceType: 'forward' FunctionTolerance: 1.0000e-06 MaxIterations: 400 OutputFcn: [] PlotFcn: [] SpecifyObjectiveGradient: 0 StepTolerance: 1.0000e-06 TypicalX: 'ones(numberOfVariables,1)' UseParallel: 0 Options not used by current Algorithm ('levenberg-marquardt') Default properties: BarrierParamUpdate: 'monotone' ConstraintTolerance: 1.0000e-06 JacobianMultiplyFcn: [] OptimalityTolerance: 1.0000e-06 SpecifyConstraintGradient: 0 SubproblemAlgorithm: 'factorization'
Use Dot Notation to Update Options
Update existing options with new values by using dot notation.
Set options for the lsqnonlin
solver to use the levenberg-marquardt
algorithm and at most 1500 function evaluations
options = optimoptions(@lsqnonlin,'Algorithm','levenberg-marquardt',... 'MaxFunctionEvaluations',1500)
options = lsqnonlin options: Options used by current Algorithm ('levenberg-marquardt'): (Other available algorithms: 'interior-point', 'trust-region-reflective') Set properties: Algorithm: 'levenberg-marquardt' MaxFunctionEvaluations: 1500 Default properties: Display: 'final' FiniteDifferenceStepSize: 'sqrt(eps)' FiniteDifferenceType: 'forward' FunctionTolerance: 1.0000e-06 MaxIterations: 400 OutputFcn: [] PlotFcn: [] SpecifyObjectiveGradient: 0 StepTolerance: 1.0000e-06 TypicalX: 'ones(numberOfVariables,1)' UseParallel: 0 Options not used by current Algorithm ('levenberg-marquardt') Default properties: BarrierParamUpdate: 'monotone' ConstraintTolerance: 1.0000e-06 JacobianMultiplyFcn: [] OptimalityTolerance: 1.0000e-06 SpecifyConstraintGradient: 0 SubproblemAlgorithm: 'factorization'
Increase MaxFunctionEvaluations
to 2000 by using dot notation.
options.MaxFunctionEvaluations = 2000
options = lsqnonlin options: Options used by current Algorithm ('levenberg-marquardt'): (Other available algorithms: 'interior-point', 'trust-region-reflective') Set properties: Algorithm: 'levenberg-marquardt' MaxFunctionEvaluations: 2000 Default properties: Display: 'final' FiniteDifferenceStepSize: 'sqrt(eps)' FiniteDifferenceType: 'forward' FunctionTolerance: 1.0000e-06 MaxIterations: 400 OutputFcn: [] PlotFcn: [] SpecifyObjectiveGradient: 0 StepTolerance: 1.0000e-06 TypicalX: 'ones(numberOfVariables,1)' UseParallel: 0 Options not used by current Algorithm ('levenberg-marquardt') Default properties: BarrierParamUpdate: 'monotone' ConstraintTolerance: 1.0000e-06 JacobianMultiplyFcn: [] OptimalityTolerance: 1.0000e-06 SpecifyConstraintGradient: 0 SubproblemAlgorithm: 'factorization'
Copy Options to Another Solver
Transfer nondefault options for the fmincon
solver to options for the fminunc
solver.
Set options for fmincon
to use the sqp algorithm and at most 1500 iterations.
oldoptions = optimoptions(@fmincon,'Algorithm','sqp','MaxIterations',1500)
oldoptions = fmincon options: Options used by current Algorithm ('sqp'): (Other available algorithms: 'active-set', 'interior-point', 'sqp-legacy', 'trust-region-reflective') Set properties: Algorithm: 'sqp' MaxIterations: 1500 Default properties: ConstraintTolerance: 1.0000e-06 Display: 'final' FiniteDifferenceStepSize: 'sqrt(eps)' FiniteDifferenceType: 'forward' MaxFunctionEvaluations: '100*numberOfVariables' ObjectiveLimit: -1.0000e+20 OptimalityTolerance: 1.0000e-06 OutputFcn: [] PlotFcn: [] ScaleProblem: 0 SpecifyConstraintGradient: 0 SpecifyObjectiveGradient: 0 StepTolerance: 1.0000e-06 TypicalX: 'ones(numberOfVariables,1)' UseParallel: 0 Options not used by current Algorithm ('sqp') Default properties: BarrierParamUpdate: 'monotone' EnableFeasibilityMode: 0 FunctionTolerance: 1.0000e-06 HessianApproximation: 'not applicable' HessianFcn: [] HessianMultiplyFcn: [] HonorBounds: 1 SubproblemAlgorithm: 'factorization'
Transfer the applicable options to the fminunc
solver.
options = optimoptions(@fminunc,oldoptions)
options = fminunc options: Options used by current Algorithm ('quasi-newton'): (Other available algorithms: 'trust-region') Set properties: FiniteDifferenceType: 'forward' MaxIterations: 1500 OptimalityTolerance: 1.0000e-06 PlotFcn: [] SpecifyObjectiveGradient: 0 StepTolerance: 1.0000e-06 Default properties: Algorithm: 'quasi-newton' Display: 'final' FiniteDifferenceStepSize: 'sqrt(eps)' HessianApproximation: 'bfgs' MaxFunctionEvaluations: '100*numberOfVariables' ObjectiveLimit: -1.0000e+20 OutputFcn: [] TypicalX: 'ones(numberOfVariables,1)' UseParallel: 0 Options not used by current Algorithm ('quasi-newton') Set properties: FunctionTolerance: 1.0000e-06 HessianFcn: [] HessianMultiplyFcn: [] SubproblemAlgorithm: 'factorization'
The algorithm option does not transfer to fminunc
because 'sqp'
is not a valid algorithm option for fminunc
.
Find Solver and Default Options for Optimization Problem
Create an optimization problem and find the default solver and options.
rng default x = optimvar('x',3,'LowerBound',0); expr = x'*(eye(3) + randn(3))*x - randn(1,3)*x; prob = optimproblem('Objective',expr); options = optimoptions(prob)
options = quadprog options: Options used by current Algorithm ('interior-point-convex'): (Other available algorithms: 'active-set', 'trust-region-reflective') Set properties: No options set. Default properties: Algorithm: 'interior-point-convex' ConstraintTolerance: 1.0000e-08 Display: 'final' LinearSolver: 'auto' MaxIterations: 200 OptimalityTolerance: 1.0000e-08 StepTolerance: 1.0000e-12 Options not used by current Algorithm ('interior-point-convex') Default properties: FunctionTolerance: 'default dependent on problem' HessianMultiplyFcn: [] ObjectiveLimit: -1.0000e+20 SubproblemAlgorithm: 'cg' TypicalX: 'ones(numberOfVariables,1)'
The default solver is quadprog
.
Set the options to use iterative display. Find the solution.
options.Display = 'iter'; sol = solve(prob,'Options',options);
Solving problem using quadprog. Your Hessian is not symmetric. Resetting H=(H+H')/2. Iter Fval Primal Infeas Dual Infeas Complementarity 0 2.018911e+00 0.000000e+00 2.757660e+00 6.535839e-01 1 -2.170204e+00 0.000000e+00 8.881784e-16 2.586177e-01 2 -3.405808e+00 0.000000e+00 8.881784e-16 2.244054e-03 3 -3.438788e+00 0.000000e+00 3.356690e-16 7.261144e-09 Minimum found that satisfies the constraints. Optimization completed because the objective function is non-decreasing in feasible directions, to within the value of the optimality tolerance, and constraints are satisfied to within the value of the constraint tolerance.
sol.x
ans = 3×1
1.6035
0.0000
0.8029
Input Arguments
SolverName
— Solver name
character vector | string | function handle
Solver name, specified as a character vector, string, or function handle.
Example: 'fmincon'
Example: @fmincon
Data Types: char
| function_handle
| string
oldoptions
— Options created with optimoptions
options object
Options created with the optimoptions
function,
specified as an options object.
Example: oldoptions =
optimoptions(@fminunc)
prob
— Problem object
OptimizationProblem
object | EquationProblem
object
Problem object, specified as an OptimizationProblem
object or an EquationProblem
object. Create prob
using
the Problem-Based Optimization Workflow or Problem-Based Workflow for Solving Equations.
The syntaxes using prob
enable you to determine the
default solver for your problem and to modify the algorithm or other
options.
Example: prob = optimproblem('Objective',myobj)
, where
myobj
is an optimization expression
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
Example: optimoptions(@fmincon,'Display','iter','FunctionTolerance',1e-10)
sets fmincon
options to have iterative display and a
FunctionTolerance
of 1e-10
.
For relevant name-value pair arguments, consult the options table for your solver:
fgoalattain
options
fmincon
options
fminimax
options
fminunc
options
fseminf
options
fsolve
options
ga
options
(Global Optimization Toolbox)gamultiobj
options
(Global Optimization Toolbox)intlinprog
options
linprog
options
lsqcurvefit
options
lsqlin
options
lsqnonlin
options
paretosearch
options
(Global Optimization Toolbox)particleswarm
options
(Global Optimization Toolbox)patternsearch
options
(Global Optimization Toolbox)quadprog
options
simulannealbnd
options
(Global Optimization Toolbox)surrogateopt
options
(Global Optimization Toolbox)
Output Arguments
options
— Optimization options
options object
Optimization options for the SolverName
solver,
returned as an options object.
Alternative Functionality
Live Editor Task
The Optimize Live Editor task lets you set options visually. For an example, see Optimize Live Editor Task with fmincon Solver.
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
Usage notes and limitations:
Code generation supports a limited set of options for each solver. For the supported options, see each solver reference page:
fmincon
Code Generationfsolve
Code Generationlsqcurvefit
Code Generationlsqnonlin
Code Generationquadprog
Code Generation
Version History
Introduced in R2013a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)