This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.


Class: DelaunayTri

(Not recommended) Construct Delaunay triangulation


DelaunayTri is not recommended. Use delaunayTriangulation instead.


DT = DelaunayTri()
DT = DelaunayTri(X)
DT = DelaunayTri(x,y)
DT = DelaunayTri(x,y,z)
DT = DelaunayTri(..., C)


DT = DelaunayTri() creates an empty Delaunay triangulation.

DT = DelaunayTri(X), DT = DelaunayTri(x,y) and DT = DelaunayTri(x,y,z) create a Delaunay triangulation from a set of points. The points can be specified as an mpts-by-ndim matrix X, where mpts is the number of points and ndim is the dimension of the space where the points reside, where ndim is 2 or 3. Alternatively, the points can be specified as column vectors (x,y) or (x,y,z) for 2-D and 3-D input.

DT = DelaunayTri(..., C) creates a constrained Delaunay triangulation. The edge constraints C are defined by an numc-by-2 matrix, numc being the number of constrained edges. Each row of C defines a constrained edge in terms of its endpoint indices into the point set X. This feature is only supported for 2-D triangulations.


Compute the Delaunay triangulation of twenty random points located within a unit square.

x = rand(20,1);
y = rand(20,1);
dt = DelaunayTri(x,y)

For more examples, type help demoDelaunayTri at the MATLAB® command-line prompt.

More About

expand all