Main Content

Custom Training Loops

Train deep learning networks using custom training loops

If the trainingOptions function does not provide the training options that you need for your task, or you have a loss function that the trainnet function does not support, then you can define a custom training loop. For models that cannot be specified as networks of layers, you can define the model as a function. To learn more, see Define Custom Training Loops, Loss Functions, and Networks.

Functions

expand all

dlnetworkDeep learning neural network
trainingProgressMonitorMonitor and plot training progress for deep learning custom training loops (Since R2022b)
minibatchqueueCreate mini-batches for deep learning (Since R2020b)
padsequencesPad or truncate sequence data to same length (Since R2021a)
dlarrayDeep learning array for customization
dlgradientCompute gradients for custom training loops using automatic differentiation
dlfevalEvaluate deep learning model for custom training loops
crossentropyCross-entropy loss for classification tasks
indexcrossentropyIndex cross-entropy loss for classification tasks (Since R2024b)
l1lossL1 loss for regression tasks (Since R2021b)
l2lossL2 loss for regression tasks (Since R2021b)
huberHuber loss for regression tasks (Since R2021a)
ctcConnectionist temporal classification (CTC) loss for unaligned sequence classification (Since R2021a)
mseHalf mean squared error

Topics

Featured Examples

Go to top of page