Convert geocentric latitude to geodetic latitude
geodeticLatitude =
geoc2geod(geocentricLatitude,radii)
[geodeticLatitude,height] =
geoc2geod(geocentricLatitude,radii)
geodeticLatitude =
geoc2geod(geocentricLatitude,radii,model)
[geodeticLatitude,height] =
geoc2geod(geocentricLatitude,radii,model)
geodeticLatitude =
geoc2geod(geocentricLatitude,radii,flattening, equatorialRadius)
[geodeticLatitude,height] =
geoc2geod(geocentricLatitude,radii,flattening,equatorialRadius)
and
geodeticLatitude
=
geoc2geod(geocentricLatitude
,radii
)[
convert an array of geocentric latitudes and an array of radii from the center of the
planet into an array of geodetic latitudes. The optional geodeticLatitude
,height
] =
geoc2geod(geocentricLatitude
,radii
)height
returns the mean sea-level altitude (MSL).
and
geodeticLatitude
=
geoc2geod(geocentricLatitude
,radii
,model
)[
convert for a specific ellipsoid planet.geodeticLatitude
,height
] =
geoc2geod(geocentricLatitude
,radii
,model
)
and
geodeticLatitude
=
geoc2geod(geocentricLatitude
,radii
,flattening
, equatorialRadius
)[
convert for a custom ellipsoid planet defined by flattening and the equatorial
radius.geodeticLatitude
,height
] =
geoc2geod(geocentricLatitude
,radii
,flattening
,equatorialRadius
)
This function has the limitation that this implementation generates a geodetic latitude that lies between ±90 degrees.
|
Array of geocentric latitudes, in degrees. Latitude values can be any value. However, values of +90 and -90 may return unexpected values because of singularity at the poles. |
|
Array of radii from the center of the planet, in meters. |
|
Specific ellipsoid planet. This function supports only |
|
Custom ellipsoid planet defined by flattening. |
|
Equatorial radius, in meters. |
|
Array of geodetic latitudes, in degrees. |
|
Scalar of mean sea-level altitude (MSL), in meters. |
Determine geodetic latitude given a geocentric latitude and radius:
[gd,h] = geoc2geod(45,6379136)
gd = 45.1921 h = 1.1718e+04
Determine geodetic latitude at multiple geocentric latitudes, given a radius, and specifying WGS84 ellipsoid model:
[gd,h] = geoc2geod([0 45 90],6379136,'WGS84')
gd = 0 45.1921 90.0000 h = 1.0e+04 * 0.0999 1.1718 2.2384
Determine geodetic latitude at multiple geocentric latitudes, given a radius, and specifying custom ellipsoid model:
f = 1/196.877360; Re = 3397000; [gd,h] = geoc2geod([0 45 90],6379136,f,Re)
gd = 0 45.1550 90.0000 h = 1.0e+06 * 2.9821 2.9908 2.9994
Jackson, E.B., Manual for a Workstation-based Generic Flight Simulation Program (LaRCsim) Version 1.4, NASA TM 110164, April 1995
Hedgley, D. R., Jr., An Exact Transformation from Geocentric to Geodetic Coordinates for Nonzero Altitudes, NASA TR R-458, March, 1976
Clynch, J. R.. "Radius of the Earth - Radii Used in Geodesy." Naval Postgraduate School, Monterey, California, 2002.
Stevens, B. L., and F. L. Lewis, Aircraft Control and Simulation, John Wiley & Sons, New York, NY, 1992
Edwards, C. H., and D. E. Penny, Calculus and Analytical Geometry, 2nd Edition, Prentice-Hall, Englewood Cliffs, NJ, 1986