Skip to content
MathWorks - Mobile View
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
MathWorks
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out

Videos and Webinars

  • MathWorks
  • Videos
  • Videos Home
  • Search
  • Videos Home
  • Search
  • Contact sales
  • Trial software
41:11 Video length is 41:11.
  • Description
  • Related Resources

Implement Deep Learning Applications for NVIDIA GPUs with GPU Coder

GPU Coder™ generates readable and portable CUDA® code that leverages CUDA libraries like cuBLAS and cuDNN from the MATLAB® algorithm, which is then cross-compiled and deployed to NVIDIA® GPUs from the Tesla® to the embedded Jetson™ platform.

The first part of this talk describes how MATLAB is used to design and prototype end-to-end systems that include a deep learning network augmented with computer vision algorithms. You’ll learn about the affordances in MATLAB to access and manage large data sets, as well as pretrained models to quickly get started with deep learning design. Then, you’ll see how distributed and GPU computing capabilities integrated with MATLAB are employed during training, debugging, and verification of the network. Finally, most end-to-end systems need more than just classification: Data needs to be pre- and post-processed before and after classification. The results are often inputs to a downstream control system. These traditional computer vision and control algorithms, written in MATLAB, are used to interface with the deep learning network to build up the end-to-end system.

The second part of this talk focuses on the embedded deployment phase. Using representative examples from automated driving to illustrate the entire workflow, see how GPU Coder automatically analyzes your MATLAB algorithm to (a) partition the MATLAB algorithm between CPU/GPU execution; (b) infer memory dependencies; (c) allocate to the GPU memory hierarchy (including global, local, shared, and constant memories); (d) minimize data transfers and device-synchronizations between CPU and GPU; and (e) finally generate CUDA code that leverages optimized CUDA libraries like cuBLAS and cuDNN to deliver high-performance.

Finally, you’ll see that the generated code is highly optimized with benchmarks that show that deep learning inference performance of the auto-generated CUDA code is ~2.5x faster for mxNet, ~5x faster for Caffe2, and ~7x faster for TensorFlow®.

Watch this talk to learn how to:

1. Access and manage large image sets

2. Visualize networks and gain insight into the training process

3. Import reference networks such as AlexNet and GoogLeNet

4. Automatically generate portable and optimized CUDA code from the MATLAB algorithm

You can find the code examples used in the webinar as a part of the shipping examples for GPU Coder.

Related Products

  • GPU Coder

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper

Generating CUDA Code from MATLAB: Accelerating Embedded Vision and Deep Learning Algorithms on GPUs

Read white paper

Feedback

Featured Product

GPU Coder

  • Request Trial
  • Get Pricing

Up Next:

42:27
Machine Learning and Computer Vision for Medical Imaging...

Related Videos:

40:27
Machine Learning and Computer Vision for Biological Imaging...
27:59
Deep Learning for Computer Vision
7:35
Deep Learning for Computer Vision with MATLAB (Highlights)
4:18
Mission on Mars Robot Challenge: How to Implement...

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Contact sales
  • Trial software

MathWorks

Accelerating the pace of engineering and science

MathWorks is the leading developer of mathematical computing software for engineers and scientists.

Discover…

Explore Products

  • MATLAB
  • Simulink
  • Student Software
  • Hardware Support
  • File Exchange

Try or Buy

  • Downloads
  • Trial Software
  • Contact Sales
  • Pricing and Licensing
  • How to Buy

Learn to Use

  • Documentation
  • Tutorials
  • Examples
  • Videos and Webinars
  • Training

Get Support

  • Installation Help
  • MATLAB Answers
  • Consulting
  • License Center
  • Contact Support

About MathWorks

  • Careers
  • Newsroom
  • Social Mission
  • Customer Stories
  • About MathWorks
  • Select a Web Site United States
  • Trust Center
  • Trademarks
  • Privacy Policy
  • Preventing Piracy
  • Application Status

© 1994-2022 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Join the conversation