plot stream lines over sphere near to rigid wall
    4 views (last 30 days)
  
       Show older comments
    
%subplot(2,2,1)
A=[    -0.02351
   0.06333
  -0.00366
   0.00064
  -0.00012
   0.00002
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000];
B=[     0.15421
   0.00965
  -0.00025
   0.00001
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
.00000E+00
.00000E+00
.00000E+00
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000
   0.00000];
a = 1 ;   %RADIUS
L=.2;
c =-a/L;
b =a/L;
m =a*100; % NUMBER OF INTERVALS
[x,y]=meshgrid([c+.2:(b-c)/m:b],[c:(b-c)/m:b]');
[I J]=find(sqrt(x.^2+y.^2)<(a-.1));
if ~isempty(I)
 x(I,J) = 0;
y(I,J) = 0;
end
r=sqrt(x.^2+y.^2);
syms t real
theta=atan2(y,x);
warning off
chi=1;alpha=1;ab1=1;n=30;
k=real(sqrt(1i.*chi.^2+alpha.^2));
h=@(t)(t-sqrt(t.^2+k.^2)).^(-1).* (t.*(exp(-sqrt(t.^2+k.^2).*(r.*cos(theta)+ab1))-exp(-t.*(r.*cos(theta)+ab1))).*(((-1).^(n-1).*t.^(n-1).*exp(-ab1.*t)./factorial( n ))+((-1).^(n).*sqrt(pi.*k./2./t.^2).*exp(-ab1.*sqrt(t.^2+k.^2)).*gegenbauerC(n,-1./2, sqrt(t.^2+k.^2)./k))).*t.*besselj(1,t.*r.*sin(theta)));
hint = integral(h, 0, inf, 'ArrayValued', true)
v=@(t)(t-sqrt(t.^2+k.^2)).^(-1).* ((-t.*exp(-sqrt(t.^2+k.^2).*(r.*cos(theta)+ab1))+sqrt(t.^2+k.^2).*exp(-t.*(r.*cos(theta)+ab1))).*(((-1).^(n).*t.^(n-1).*exp(-ab1.*t)./factorial( n))+((-1).^(n-1).*sqrt(pi.*k./2./sqrt(t.^2+k.^2).^2).*exp(-ab1.*sqrt(t.^2+k.^2)).*gegenbauerC(n,-1./2, sqrt(t.^2+k.^2)./k))).*t.*besselj(1,t.*r.*sin(theta)));
hinv = integral(v, 0, inf, 'ArrayValued', true)
psi1=0;
for i=2:10
Ai=A(i-1);Bi=B(i-1);
psi1=psi1+(Ai.*(r.^(-i+1)+hint)+(r.^(1./2).*besselk(i-1./2,r.*k)+hinv).*Bi).*gegenbauerC(i,-1./2, cos(theta));
end
[DH,h2]=contour(x,y,psi1,5,'-k');
%clabel(CH,h1,'FontSize',8);clabel(DH,h2,'FontSize',8)
hold on
m1=50;
r1=ones(1,m1+1)*a;
th=[0:2*pi/m1:2*pi];
set(polar(th,r1,'-k'),'LineWidth',1.1);
title('$\quad \frac{a_1}{a_2}=0.01, \quad \alpha=0.1$','Interpreter','latex','FontSize',10,'FontName','Times New Roman','FontWeight','Normal')
ylabel({'$\eta=1\quad\quad$'},'Interpreter','latex','FontSize',10,'rot',360,'FontName','Times New Roman','FontWeight','Normal');
%title('Happel$^\prime$s model','Interpreter','latex','FontSize',10,'FontName','Times New Roman','FontWeight','Normal')
axis square
axis on
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1 Comment
  DGM
      
      
 on 8 Aug 2021
				I suspect those values in A and B used to be meaningful, nonzero values.  It looks like you copypasted them from a console display, which would mean they've been truncated.  If so, all that information is gone.
Answers (0)
See Also
Categories
				Find more on Line Plots in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
