The Loops in the first picture are required, the description is below
1 view (last 30 days)
Show older comments
%% Suppose I have W and Theta, k=1:K .. K=(any value) let say 10
%%
Alfa_k=zeros(1,k);
Alfa_i=zeros(1,k);
Angle_h_w=zeros(1,k);
Angle_g_h_w=zeros(1,k);
n0=zeros(1,k);
for t_1=1:k
Alfa_k(t_1) = 1/(abs(H(t_1,:)*W(:,t_1)));
Angle_h_w(t_1) = angle(H(t_1,:)*W(:,t_1));
Alfa_i(t_1) = 0;
for t_2=1:k
Alfa_i(t_1) = Alfa_i(t_1) + 1/(abs(H(t_2,:)*W(:,t_2)));
end
Alfa_i(t_1) = Alfa_i(t_1) - Alfa_k(t_1); % Sum of Alfa_i
end
L_k = n*(Alfa_k./Alfa_i); % Number of IRS Elements Assigned to UE ..
% Total IRS Elements * Proportion of IRS Elements
r = n-(sum(L_k)); %The Remaining IRS Elements ..
% Are Assigned to The Weakest UE
[argvalue, argmax] = max(Alfa_k);
L_k0=L_k(argmax);
L_k0 = L_k0+r;
[Alfa_m,idx]= sort(Alfa_k, 'descend'); % sort UE
L_m = sort(L_k, 'descend');
F = F(idx,:); % sort the whole matrix using the sort idx
W = W(:,idx); % sort the whole matrix using the sort idx
for t_3=1:k
n0(t_3)=(abs(F(t_3,:)*G*W(:,t_3)))
Angle_g_h_w(t_3) = angle(F(t_3,:)*G*W(:,t_3))
end
[argval, arg_max] = max(n0)
Theta_k = -Angle_h_w-Angle_g_h_w
3 Comments
Image Analyst
on 15 Dec 2021
Edited: Image Analyst
on 15 Dec 2021
Original question attached
%% Suppose I have W and Theta, k=1:K .. K=(any value) let say 10
%%
Alfa_k=zeros(1,k);
Alfa_i=zeros(1,k);
Angle_h_w=zeros(1,k);
Angle_g_h_w=zeros(1,k);
n0=zeros(1,k);
for t_1=1:k
Alfa_k(t_1) = 1/(abs(H(t_1,:)*W(:,t_1)));
Angle_h_w(t_1) = angle(H(t_1,:)*W(:,t_1));
Alfa_i(t_1) = 0;
for t_2=1:k
Alfa_i(t_1) = Alfa_i(t_1) + 1/(abs(H(t_2,:)*W(:,t_2)));
end
Alfa_i(t_1) = Alfa_i(t_1) - Alfa_k(t_1); % Sum of Alfa_i
end
L_k = n*(Alfa_k./Alfa_i); % Number of IRS Elements Assigned to UE ..
% Total IRS Elements * Proportion of IRS Elements
r = n-(sum(L_k)); %The Remaining IRS Elements ..
% Are Assigned to The Weakest UE
[argvalue, argmax] = max(Alfa_k);
L_k0=L_k(argmax);
L_k0 = L_k0+r;
[Alfa_m,idx]= sort(Alfa_k, 'descend'); % sort UE
L_m = sort(L_k, 'descend');
F = F(idx,:); % sort the whole matrix using the sort idx
W = W(:,idx); % sort the whole matrix using the sort idx
for t_3=1:k
n0(t_3)=(abs(F(t_3,:)*G*W(:,t_3)))
Angle_g_h_w(t_3) = angle(F(t_3,:)*G*W(:,t_3))
end
[argval, arg_max] = max(n0)
Theta_k = -Angle_h_w-Angle_g_h_w
Answers (1)
Walter Roberson
on 29 Jun 2021
Example with your second set of code. The array sizes are constructed to be consistent with your code
k = 5;
m = 3;
M = 7;
H = randi(9, k, M)
W = randi(9, M, k)
n = rand()
F = randi(9, k, m)
G = randi(9, m, M)
Alfa_k=zeros(1,k);
Alfa_i=zeros(1,k);
Angle_h_w=zeros(1,k);
Angle_g_h_w=zeros(1,k);
n0=zeros(1,k);
for t_1=1:k
Alfa_k(t_1) = 1/(abs(H(t_1,:)*W(:,t_1)));
Angle_h_w(t_1) = angle(H(t_1,:)*W(:,t_1));
Alfa_i(t_1) = 0;
for t_2=1:k
Alfa_i(t_1) = Alfa_i(t_1) + 1/(abs(H(t_2,:)*W(:,t_2)));
end
Alfa_i(t_1) = Alfa_i(t_1) - Alfa_k(t_1); % Sum of Alfa_i
end
L_k = n*(Alfa_k./Alfa_i); % Number of IRS Elements Assigned to UE ..
% Total IRS Elements * Proportion of IRS Elements
r = n-(sum(L_k)); %The Remaining IRS Elements ..
% Are Assigned to The Weakest UE
[argvalue, argmax] = max(Alfa_k);
L_k0=L_k(argmax);
L_k0 = L_k0+r;
[Alfa_m,idx]= sort(Alfa_k, 'descend'); % sort UE
L_m = sort(L_k, 'descend');
F = F(idx,:); % sort the whole matrix using the sort idx
W = W(:,idx); % sort the whole matrix using the sort idx
for t_3=1:k
n0(t_3)=(abs(F(t_3,:)*G*W(:,t_3)))
Angle_g_h_w(t_3) = angle(F(t_3,:)*G*W(:,t_3))
end
[argval, arg_max] = max(n0)
Theta_k = -Angle_h_w-Angle_g_h_w
4 Comments
Walter Roberson
on 29 Jun 2021
No, I do not know how to make it compatible with the first picture. If I were coding it, I would start over without your existing code.
See Also
Categories
Find more on Multidimensional Arrays in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!