FFT Function not working with multiple columns
    8 views (last 30 days)
  
       Show older comments
    
I am trying to analyze data that I recorded from the Force Sensitive Resistors (FSRs) coded on Arduino through data streamer on excel. I used four FSRs, so there are 4 columns of data over a set of time (1200 rows, 12 seconds). I seperated time from the FSR data so that I can graph the FFT of the FSR data against the time. 
But I get very strange graphs when I get the plot back (Attached below) 
For each single column of data, I get a bunch of lines instead of one. 
Can someone tell me how I can see the frequency of the FSR data? 
X = xlsread('botdata.csv');
t = xlsread('botdatatime.csv');
Y = fft(X);
plot(X,Y);
4 Comments
Accepted Answer
  Mathieu NOE
      
 on 1 May 2021
        hello 
first , xlsread is a bit outdated , use importdata instead
second, here's a generic code for time and frequency analysis  (linear averaged fft spectrum and spectrograms)
your data does not contain much "dynamics" so it's all very low in the frequency range 
clc
clearvars
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% load signal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% data
signal = importdata('botdata.csv');
t = importdata('botdatatime.csv');
dt = mean(diff(t));
Fs = 1/dt;
[samples,channels] = size(signal);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FFT parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
NFFT = 256;    % 
OVERLAP = 0.75;
% spectrogram dB scale
spectrogram_dB_scale = 80;  % dB range scale (means , the lowest displayed level is XX dB below the max level)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% options 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% if you are dealing with acoustics, you may wish to have A weighted
% spectrums 
% option_w = 0 : linear spectrum (no weighting dB (L) )
% option_w = 1 : A weighted spectrum (dB (A) )
option_w = 0;
%% decimate (if needed)
% NB : decim = 1 will do nothing (output = input)
decim = 1;
if decim>1
    for ck = 1:channels
    newsignal(:,ck) = decimate(signal(:,ck),decim);
    Fs = Fs/decim;
    end
   signal = newsignal;
end
samples = length(signal);
time = (0:samples-1)*1/Fs;
%%%%%% legend structure %%%%%%%%
for ck = 1:channels
    leg_str{ck} = ['Channel ' num2str(ck) ];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 1 : time domain plot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(1),plot(time,signal);grid on
title(['Time plot  / Fs = ' num2str(Fs) ' Hz ']);
xlabel('Time (s)');ylabel('Amplitude');
legend(leg_str);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 2 : averaged FFT spectrum
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[freq, sensor_spectrum] = myfft_peak(signal,Fs,NFFT,OVERLAP);
% convert to dB scale (ref = 1)
sensor_spectrum_dB = 20*log10(sensor_spectrum);
% apply A weigthing if needed
if option_w == 1
    pondA_dB = pondA_function(freq);
    sensor_spectrum_dB = sensor_spectrum_dB+pondA_dB;
    my_ylabel = ('Amplitude (dB (A))');
else
    my_ylabel = ('Amplitude (dB (L))');
end
figure(2),plot(freq,sensor_spectrum_dB);grid on
df = freq(2)-freq(1); % frequency resolution 
title(['Averaged FFT Spectrum  / Fs = ' num2str(Fs) ' Hz / Delta f = ' num2str(df,3) ' Hz ']);
xlabel('Frequency (Hz)');ylabel(my_ylabel);
legend(leg_str);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 3 : time / frequency analysis : spectrogram demo
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for ck = 1:channels
    [sg,fsg,tsg] = specgram(signal(:,ck),NFFT,Fs,hanning(NFFT),floor(NFFT*OVERLAP));  
    % FFT normalisation and conversion amplitude from linear to dB (peak)
    sg_dBpeak = 20*log10(abs(sg))+20*log10(2/length(fsg));     % NB : X=fft(x.*hanning(N))*4/N; % hanning only
    % apply A weigthing if needed
    if option_w == 1
        pondA_dB = pondA_function(fsg);
        sg_dBpeak = sg_dBpeak+(pondA_dB*ones(1,size(sg_dBpeak,2)));
        my_title = ('Spectrogram (dB (A))');
    else
        my_title = ('Spectrogram (dB (L))');
    end
    % saturation of the dB range : 
    % saturation_dB = 60;  % dB range scale (means , the lowest displayed level is XX dB below the max level)
    min_disp_dB = round(max(max(sg_dBpeak))) - spectrogram_dB_scale;
    sg_dBpeak(sg_dBpeak<min_disp_dB) = min_disp_dB;
    % plots spectrogram
    figure(2+ck);
    imagesc(tsg,fsg,sg_dBpeak);colormap('jet');
    axis('xy');colorbar('vert');grid on
    df = fsg(2)-fsg(1); % freq resolution 
    title([my_title ' / Fs = ' num2str(Fs) ' Hz / Delta f = ' num2str(df,3) ' Hz / Channel : ' num2str(ck)]);
    xlabel('Time (s)');ylabel('Frequency (Hz)');
end
function pondA_dB = pondA_function(f)
	% dB (A) weighting curve
	n = ((12200^2*f.^4)./((f.^2+20.6^2).*(f.^2+12200^2).*sqrt(f.^2+107.7^2).*sqrt(f.^2+737.9^2)));
	r = ((12200^2*1000.^4)./((1000.^2+20.6^2).*(1000.^2+12200^2).*sqrt(1000.^2+107.7^2).*sqrt(1000.^2+737.9^2))) * ones(size(f));
	pondA = n./r;
	pondA_dB = 20*log10(pondA(:));
end
function  [freq_vector,fft_spectrum] = myfft_peak(signal, Fs, nfft, Overlap)
% FFT peak spectrum of signal  (example sinus amplitude 1   = 0 dB after fft).
% Linear averaging
%   signal - input signal, 
%   Fs - Sampling frequency (Hz).
%   nfft - FFT window size
%   Overlap - buffer percentage of overlap % (between 0 and 0.95)
[samples,channels] = size(signal);
% fill signal with zeros if its length is lower than nfft
if samples<nfft
    s_tmp = zeros(nfft,channels);
    s_tmp((1:samples),:) = signal;
    signal = s_tmp;
    samples = nfft;
end
% window : hanning
window = hanning(nfft);
window = window(:);
%    compute fft with overlap 
 offset = fix((1-Overlap)*nfft);
 spectnum = 1+ fix((samples-nfft)/offset); % Number of windows
%     % for info is equivalent to : 
%     noverlap = Overlap*nfft;
%     spectnum = fix((samples-noverlap)/(nfft-noverlap));	% Number of windows
    % main loop
    fft_spectrum = 0;
    for i=1:spectnum
        start = (i-1)*offset;
        sw = signal((1+start):(start+nfft),:).*(window*ones(1,channels));
        fft_spectrum = fft_spectrum + (abs(fft(sw))*4/nfft);     % X=fft(x.*hanning(N))*4/N; % hanning only 
    end
    fft_spectrum = fft_spectrum/spectnum; % to do linear averaging scaling
% one sidded fft spectrum  % Select first half 
    if rem(nfft,2)    % nfft odd
        select = (1:(nfft+1)/2)';
    else
        select = (1:nfft/2+1)';
    end
fft_spectrum = fft_spectrum(select,:);
freq_vector = (select - 1)*Fs/nfft;
end
5 Comments
  Mathieu NOE
      
 on 3 May 2021
				hello 
glad it works now ! 
if my answer does match your expectations, do you consider accept it ? 
More Answers (0)
See Also
Categories
				Find more on Multirate Signal Processing in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


