How do i get aproximation of a function?
2 views (last 30 days)
Show older comments
I have the following function :
f (t) = 0.05*sin(1000*t)+0.5*cos(pi*t)-0.4*(10*t)
t are points distributed equidistantly between [0,1] for which i calculate values of f .
The following pairs (ti,f(ti)) are inputs for aproximation of function f with Lagrange and Least Squares.
This is what i tried, but doesn't seem to work, because i'm not sure if i'm doing f right
%Main function
t=linspace(0,1);
f = 0.05*sin(1000*t)+0.5*cos(pi*t)-0.4*sin(10*t);
lagrange(t,f); % returns coeficients of Lagrange polynomial of rank 1
least_squares(t,f) % returns coeficients of polynomial of rank n using least squares method
This is the lagrange function:
%Lagrange
function[L] = lagrange(x,y)
n = length(x);
lj= zeros(1,n)
Lj= zeros(n);
L=zeros(1,n);
jr=1:n;
for j=jr
mr=jr(jr~=j);%m-range 1<=m<=n, m~=j
lj=poly(x(mr));
mult=1/polyval(lj,x(j));
Lj(j,:)=mult*lj;
end
L=y*Lj;
X=-10:.1:10;
plot(x,y,'-*','linewidth',1,'markersize',5)
end
And the least_squares function:
function [yR] =least_squares(x,y)
stem(x,y);
a=[];
for i=1:length(x)
a=[a;x(i) 1];
end
c=a/y';
yR=c(1)*x+c(2);
plot(x,yR,"-*");
end
0 Comments
Answers (1)
Gargi Patil
on 15 Apr 2021
Hi,
You can refer to the following thread for function approximation which includes a least squares method approach as well as Lagrange approximation:
You can also refer to the following link for other ways to approximate a function:
0 Comments
See Also
Categories
Find more on Polynomials in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!