Plot data from while loop

1 view (last 30 days)
Michael Jacobson
Michael Jacobson on 18 Mar 2021
Commented: Mathieu NOE on 22 Mar 2021
I've written an algorithm that can approximate the root of a multivariable function using the Newton-Raphon method. The algorithm, given 2 multivariable functions and 2 guess values, runs through an equation multiple times, returning the approximate root and error each iteration. I am trying to plot the error against the iteration. However, when i do so, i get a blank plot. How would I approach plotting this error data (eax and eay [found in part 3]) from the while loop against the iteration number?
Thank you
Below is the code:
disp(['<strong>Method: </strong>' 'Newton-Raphson for Simultaneous Equations'])
n = input('Desired Accuracy: ');
e = 0.5*(10^(2-n));
syms x y
Data_Vector = [f1 f2 diff(f1,x) diff(f1,y) diff(f2,x) diff(f2,y)];
Iteration = 0;
x=input('x_guess: ');
y=input('y_guess: ');
while (1)
disp('------------')
Iteration = Iteration + 1;
disp(['<strong>Iteration: </strong>' num2str(Iteration) ])
%Part 1: Initializing
x;
y;
i = Iteration - 1;
disp([ '(x_' num2str(i) ',' 'y_' num2str(i) ')' ' = ' '(' num2str(x) ',' num2str(y) ')'])
Data_Vector_Num1 = subs(Data_Vector);
Data_Vector_Num2 = double(Data_Vector_Num1);
%Part 2: Evaluation
%Part 2A: X - Root
xr = x - (Data_Vector_Num2(1)*Data_Vector_Num2(6)-Data_Vector_Num2(2)*Data_Vector_Num2(4))/(Data_Vector_Num2(3)*Data_Vector_Num2(6)-Data_Vector_Num2(4)*Data_Vector_Num2(5));
%Part 2B: Y - Root
yr = y - (Data_Vector_Num2(2)*Data_Vector_Num2(3)-Data_Vector_Num2(1)*Data_Vector_Num2(5))/(Data_Vector_Num2(3)*Data_Vector_Num2(6)-Data_Vector_Num2(4)*Data_Vector_Num2(5));
%Part 3: Approximate Error
eax = abs((xr-x)/xr)*100;
eay = abs((yr-y)/yr)*100;
%Part 4: Resetting X & Y
x=xr;
y=yr;
%Part 5: Root Check
f1_rc_a = subs(f1);
f1_rc_b = double(f1_rc_a);
f2_rc_a = subs(f2);
f2_rc_b = double(f2_rc_a);
disp([ '(x_' num2str(Iteration) ',' 'y_' num2str(Iteration) ')' ' = ' '(' num2str(x) ',' num2str(y) ')'])
disp(['Value of Root: ' 'f1(' num2str(x) ',' num2str(y) ')' ' = ' num2str(f1_rc_b) ' || ' 'f2(' num2str(x) ',' num2str(y) ')' ' = ' num2str(f2_rc_b)])
disp(['Approximate Percent Error: ' 'x:' num2str(eax) '%' ' y:' num2str(eay) '%'])
if eax < e && eay < e
break,end
end
%Part 6: Summary
disp('=======================')
disp('<strong>Summary of Results: </strong>')
disp(['<strong>Method: </strong>' 'Newton-Raphson for Simultaneous Equations'])
disp(['<strong>Number of Iterations:</strong> ' num2str(Iteration)])
disp('<strong>Approximate Root: </strong>')
[round(x,n,'significant') round(y,n,'significant')]
disp(['<strong>Value of Root: </strong>' 'f1(' num2str(x) ',' num2str(y) ')' ' = ' num2str(f1_rc_b) ' ' 'f2(' num2str(x) ',' num2str(y) ')' ' = ' num2str(f2_rc_b)])
disp([ '<strong>Accuracy: </strong>' num2str((n)) ' Significant Figures'])
Here, I'll attatch a sample output:
Method: Newton-Raphson for Simultaneous Equations
Desired Accuracy: 4
x_guess: 1.5
y_guess: 3.5
------------
Iteration: 1
(x_0,y_0) = (1.5,3.5)
(x_1,y_1) = (2.036,2.8439)
Value of Root: f1(2.036,2.8439) = -0.064375 || f2(2.036,2.8439) = -4.7562
Approximate Percent Error: x:26.3272% y:23.0715%
------------
Iteration: 2
(x_1,y_1) = (2.036,2.8439)
(x_2,y_2) = (1.9987,3.0023)
Value of Root: f1(1.9987,3.0023) = -0.0045199 || f2(1.9987,3.0023) = 0.049571
Approximate Percent Error: x:1.8676% y:5.2764%
------------
Iteration: 3
(x_2,y_2) = (1.9987,3.0023)
(x_3,y_3) = (2,3)
Value of Root: f1(2,3) = -1.2861e-06 || f2(2,3) = -2.214e-05
Approximate Percent Error: x:0.064969% y:0.076305%
------------
Iteration: 4
(x_3,y_3) = (2,3)
(x_4,y_4) = (2,3)
Value of Root: f1(2,3) = 1.501e-13 || f2(2,3) = 2.7769e-12
Approximate Percent Error: x:8.0619e-07% y:1.9554e-05%
=======================
Summary of Results:
Method: Newton-Raphson for Simultaneous Equations
Number of Iterations: 4
Approximate Root:
ans =
2 3
Value of Root: f1(2,3) = 1.501e-13 f2(2,3) = 2.7769e-12
Accuracy: 4 Significant Figures

Accepted Answer

Mathieu NOE
Mathieu NOE on 18 Mar 2021
hello
you have to index the error variables with Iteration
otherwise you're overwritting each time (and you get only a scalar at the end - that's why the plot is blank)
eax(Iteration) = abs((xr-x)/xr)*100;
eay(Iteration) = abs((yr-y)/yr)*100;
  2 Comments
Michael Jacobson
Michael Jacobson on 21 Mar 2021
Ah ok, I did that and now the plot is coming out correctly. Thank you for the help
Mathieu NOE
Mathieu NOE on 22 Mar 2021
you're welcome

Sign in to comment.

More Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!