I'm trying to fit beta distribution parameters to a [1X60] size vector (provided below as x) using betafit() funciton but the obtained parameters do not make sense (alpha=0.3840 beta= 23.4999), presenting a distribution which is far from representing the data. Nevertheless, by manually selecting the parameters (alpha=3 beta=3.5) I was managed to get a propper fit quite easily.
Is there any automated way to fit propper beta distribution parameters for this vector?
(I was able to simulate data from beta distribution and fit it successfully with this function, but from some reason the function is "not working" when applied to my data)
Thanks
The vector
x=[0.033280 0.049990 0.074000 0.082480 0.086050 0.082780 0.077200 0.067750 0.059840 0.053020 0.046540 0.041610 0.031640 0.027930 0.023980 0.021130 ...
0.018620 0.013620 0.011490 0.009930 0.008620 0.007670 0.005640 0.004970 0.004370 0.003880 0.003340 0.003230 0.002870 0.002580 0.002390 0.002180 ...
0.001490 0.001330 0.001160 0.001000 0.000920 0.000810 0.000730 0.000650 0.000570 0.000520 0.000450 0.000400 0.000370 0.000360 0.000310 0.000270
000290 0.000280 0.000260 0.000270 0.000240 0.000200 0.000160 0.000150 0.000130 0.000160 0.000820 0.001010];
The time vector
t=[0 0.0169491525423729 0.0338983050847458 0.0508474576271187 0.0677966101694915 0.0847457627118644 0.101694915254237 0.118644067796610 0.135593220338983 0.152542372881356 0.169491525423729 0.186440677966102 0.203389830508475 0.220338983050847 0.237288135593220 0.254237288135593 0.271186440677966 0.288135593220339 0.305084745762712 0.322033898305085 0.338983050847458 0.355932203389831 0.372881355932203 0.389830508474576 0.406779661016949 0.423728813559322 0.440677966101695 0.457627118644068 0.474576271186441 0.491525423728814 0.508474576271186 0.525423728813559 0.542372881355932 0.559322033898305 0.576271186440678 0.593220338983051 0.610169491525424 0.627118644067797 0.644067796610169 0.661016949152542 0.677966101694915 0.694915254237288 0.711864406779661 0.728813559322034 0.745762711864407 0.762711864406780 0.779661016949153 0.796610169491525 0.813559322033898 0.830508474576271 0.847457627118644 0.864406779661017 0.881355932203390 0.898305084745763 0.915254237288136 0.932203389830508 0.949152542372881 0.966101694915254 0.983050847457627 1];
Code line
betafit(x)
Output
ans =
0.3840 23.4999