Clear Filters
Clear Filters

Warning: The model order was increased to handle real negative poles.

7 views (last 30 days)
Hi!
Why order of continuous transfer function increase when I apply 'zoh' to a discrete transfer function?
I know it writes that the reason is to handle the real negative poles, but that does not clarify me.
Te = 4.5e-4;
Hd_w_arx =
-2.145 z + 4.224
------------------------
z^2 - 0.9742 z - 0.01883
Hc_w_arx = d2c(Hd_w_arx,'zoh')
Hc_w_arx =
-3.183e04 s^2 - 4.419e08 s + 5.749e11
------------------------------------------
s^3 + 1.764e04 s^2 + 1.267e08 s + 1.919e09

Answers (1)

Sarvani Panguluri
Sarvani Panguluri on 15 Jan 2021
Hi,
As the documentation mentions, For discrete-time LTI models having negative real poles, ZOH d2c conversion produces a continuous system with higher order.
A negative real pole in the z domain maps to a pure imaginary value in the s domain. Such mapping results in a continuous-time model with complex data. So to avoid this issue, the interpolation algorithm maps the real negative pole in the z domain to pair of complex conjugate poles in the s domain thereby increasing the order.
For more detailed information, you can go through the References.
Hope this helps!

Categories

Find more on MATLAB in Help Center and File Exchange

Tags

Products

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!