Plotting the derivative of a non symbolically defined function

3 views (last 30 days)
I've solved a second order nonlinear differential equation in matlab and would like to plot it's derivative:
my attempts so far:
syms phi(t)
figure
hold on
for v =1:10
[V] = odeToVectorField(diff(phi,2)== 28*(0.45-0.136)-(0.9)^2 * 0.45*1.21*sqrt(2)*v^2*sin(phi)*sin(pi/4-phi)/(4*0.25));
M = matlabFunction(V,'vars', {'t','Y'});
sol = ode45(M,[0 20],[0 5]);
fplot(@(x)deval(sol,x,1), [0, 20])
end
ddt = gradient(phi(:)) ./ gradient(t(:));
fplot(ddt)
Doing this returns an error. I've also tried
y =diff(phi)
fplot(y)
which just does nothing.
Any help would be great!
  2 Comments
Louis Sharma
Louis Sharma on 8 Nov 2020
hi,
Error:
Error using symfun/subsref
Invalid argument at position 2. Symbolic function indexing evaluates the function at the input arguments. To perform colon indexing call FORMULA before indexing.

Sign in to comment.

Accepted Answer

Alan Stevens
Alan Stevens on 8 Nov 2020
You could just do it totally numerically:
phi0 = 0;
dphidt0 = 5;
IC = [phi0 dphidt0];
tspan = 0:0.1:20;
v = 1:10;
phi = zeros(numel(tspan),numel(v));
dphidt = zeros(numel(tspan),numel(v));
for i = 1:numel(v)
[t, Y] = ode45(@(t,Y) odefn(t,Y,v(i)),tspan, IC);
phi(:,i) = Y(:,1);
dphidt(:,i) = Y(:,2);
lgndstr = sprintf('v = %2i \n',i);
lgnd(i,:) = lgndstr;
end
figure(1)
plot(t,phi),grid
xlabel('t'),ylabel('\phi');
legend(lgnd)
figure(2)
plot(t,dphidt),grid
xlabel('t'),ylabel('d\phi dt');
legend(lgnd)
function dYdt = odefn(~,Y,v)
phi = Y(1);
dphidt = Y(2);
dYdt = [dphidt;
28*(0.45-0.136)-(0.9)^2*0.45*1.21*sqrt(2)*v^2*sin(phi)*sin(pi/4-phi)/(4*0.25)];
end

More Answers (0)

Categories

Find more on Symbolic Math Toolbox in Help Center and File Exchange

Products


Release

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!