NUMERICAL INTEGRATION USING SIMPSONS
1 view (last 30 days)
Show older comments
mohammed shapique
on 24 Oct 2020
Commented: mohammed shapique
on 24 Oct 2020
This is the program to evalute intergration using Simpsons. There is an error in line 11.
lambda=1:0.1:2;
gamma1=0.4;
zeta=0.3;
a=0;%lower limit
b=1;%lower limit
n=10;%number of sub-intervals
f1=@(x)((1-x).^((gamma1./zeta)-1)).*(exp(-(lambda.*x)./zeta));
h=(b-a)/n;
for k=1:1:n
x(k)=a+k*h;
y(k)=f1(x(k));
end
so=0;se=0;
for k=1:1:n-1
if rem(k,2)==1
so=so+y(k);%sum of odd terms
else
se=se+y(k); %sum of even terms
end
end
SOL=h/3*(f1(a)+f1(b)+4*so+2*se);
0 Comments
Accepted Answer
Alan Stevens
on 24 Oct 2020
The problem is that you have many values of lambda. To deal with this use a loop to do the integration for each value of lambda (this requires f1 to have an extra input parameter):
lambda=1:0.1:2;
gamma1=0.4;
zeta=0.3;
a=0;%lower limit
b=1;%lower limit
n=10;%number of sub-intervals
f1=@(x,p)((1-x).^((gamma1./zeta)-1)).*(exp(-(lambda(p).*x)./zeta));
h=(b-a)/n;
for p = 1:numel(lambda)
for k=1:n
x(k)=a+k*h;
y(k)=f1(x(k),p);
end
so=0;se=0;
for k=1:n-1
if rem(k,2)==1
so=so+y(k);%sum of odd terms
else
se=se+y(k); %sum of even terms
end
end
SOL(p)=h/3*(f1(a,p)+f1(b,p)+4*so+2*se);
end
More Answers (0)
See Also
Categories
Find more on Numerical Integration and Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!