how to compute energy and power of discrete-time signal using symbolic calculations
46 views (last 30 days)
Show older comments
I would like to get some parameters of continous and discrete-time signals i.a. the total energy and the mean power using symbolic calculations. I do not have problem to do this for a continous signal:
syms t
A = 10; %[1]
B = 5;
f = 10; %[Hz]
s = A*sin(2*pi*f*t) + B;
Et = int(s.^2,t,-inf,inf)
Pt = limit((int(s.^2,t,-t,t))/(2*t),t,inf)
but I do not have any idea how to do this for the signal which is discrete in time. I have tried, unsaccessfully, the symsym function
En = symsum(s.^2,t,-inf,inf)
Pn = limit((symsum(s.^2,t,-t,t))/(2*t),t,inf)
I expect the energy to be infinite and this my cause some problems, but the power should be a finite number.
Does anybody have an idea how to solve this problem?
0 Comments
Answers (1)
Swetha Polemoni
on 15 Oct 2020
Hi,
I have tried your code and power is finite for discrete signal also. Use "simplify" to get limit value instead of limit expression. Following code is for better understanding.
syms t
A = 10; %[1]
B = 5;
f = 1; %[Hz]
s = A*sin(2*pi*f*t) + B;
En = simplify(symsum(s.^2,t,-inf,inf))
Pn =simplify( limit((symsum(s.^2,t,-t,t))/(2*t),t,inf))
Here Pn = 25. Analyzing it step by step
-> Consider the summation.
->Here Sin(200*pi*t) is always zero since it is being calculated at integer multiplies of 2*pi. So the summation results in 25*2t
->Now dividing the summation with 2t and applying limit t->infinite results in 25*2*t/2*t => Pn =25
Though Pn is not equal to Pt here, Pn=25 is correct. Pn and Pt are different, may be, because not every time discrete signal has same power/energy as continuos signal.
3 Comments
Swetha Polemoni
on 15 Oct 2020
Edited: Swetha Polemoni
on 15 Oct 2020
Hi,
- "sumS1sqr" and "sum10S1" is always zero for any t(only integers) value since the summation is discrete. So the total summation in discrete,
S_discrete =sumS1sqr+sum10S1+sumS5sqr=50t+25
When Limit is applied to S_dis after dividing with 2*t, it would result in 25.
- In integration, it is not equal to zero because it is continuos and non integers(i.e., whole sine curve) are also considered. Consider the following code with basic example where limt value is 5
syms t
A = 10;
B = 5;
f = 100;
s = A*sin(2*pi*f*t) ;
%% WITH LIMIT %%
Using_Integration = limit((int(s.^2,t,-t,t)),t,5) % Output:Using_Integration= 500
Using_Summation = simplify(limit((symsum(s.^2,t,-t,t)),t,5))%Output: Using_Summation=0
%% WITHOUT LIMIT %%
Integration = ((int(s.^2,t,-10,10))) %Output:Integration=700
Summation= simplify(symsum(s.^2,t,-10,10)) %Output: Summation=0
% Here though the same signal is considered and sum is calculated within same
%limits, both outputs differ.
- I think it is not always possible to calculate energy or power in time domain. The same happend for the signal s2.
See Also
Categories
Find more on Calculus in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!