How can i take ds/dx and ds/dy of a function numerically
7 views (last 30 days)
Show older comments
I tried to take derivatives of s=-x^3+3*x*y^2 numericaly
ds/dx=3*y^2-3*x^2
ds/dy=6*x*y
I tried to gradient of s to find ds/dx and ds/dy but results are far from analtical results. My code is below
clc;clear;
[x y]=meshgrid(0:5,0:5)
s=-x.^3+3.*x.*y.^2
[dsx,dsy]=gradient(s)
dsy should refers ds/dy
0 3 6 9 12 15
0 6 12 18 24 30
0 12 24 36 48 60
0 18 36 54 72 90
0 24 48 72 96 120
0 27 54 81 108 135
ds/dy =6xy analtically
0 0 0 0 0 0
0 6 12 18 24 30
0 12 24 36 48 60
0 18 36 54 72 90
0 24 48 72 96 120
0 30 60 90 120 150
How can i take derivatives numerically in gradient way. where is my fault.
NOTE: It is the simplified example to find the derivatieves numerically. My real project is very complicated and all values in matrices form. So I do not intrested in analtical solutions. It should be solved in numerical. Why gradient results are far away from analtical results how can i solve this numerically.
3 Comments
Ameer Hamza
on 4 Oct 2020
I am glad that this solved the issue for you. I have added it as an answer too.
Accepted Answer
Ameer Hamza
on 4 Oct 2020
The numerical gradient can not be exactly equal to the analytical gradient, except in very simple cases. For any nonlinear function, there will be a huge difference between both. There is no way around except using a very small step size, which will decrease the difference beween analytical and numerical gradient. For example:
If step size is 1
[x, y] = meshgrid(0:5,0:5);
s = -x.^3+3.*x.*y.^2;
[~, dsy] = gradient(s, 1, 1);
err = mean((dsy - 6.*x.*y).^2, 'all') % mean squared error
Result
>> err
err =
27.5000
If step size is 0.1
[x, y] = meshgrid(0:0.1:5,0:0.1:5);
s = -x.^3+3.*x.*y.^2;
[~, dsy] = gradient(s, 0.1, 0.1);
err = mean((dsy - 6.*x.*y).^2, 'all') % mean squared error
Result
>> err
err =
0.0297
0 Comments
More Answers (1)
See Also
Categories
Find more on Surface and Mesh Plots in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!