How to calculate mean in moving cubic volume?
1 view (last 30 days)
Show older comments
I have a stack of 2D images in 3D array format 100x100x500. Now I want to select a small cubic volume of 1x1x1 at center of the stack and increase this cubic volume step by step till I reach the array size, calculating mean at each stage. I know I need to use mat2cell and mean function. How can be done in corect for loop?
0 Comments
Accepted Answer
Matt J
on 25 Jul 2020
Edited: Matt J
on 25 Jul 2020
I know I need to use mat2cell and mean function.
I don't think you do. Let's call your 3D volume, V:
[ci,cj,ck]=deal(51,51,251); %center coordinate ?
[I,J,K]=ndgrid(abs((1:100)-ci),abs((1:100)-cj),abs((1:500)-ck));
L=max(max(I,J),K)+1; %label matrix
stats = regionprops3(L,V,'MeanIntensity','Volume');
cumVolumes = cumsum(stats.Volume);
cumIntensities = cumsum(stats.Volume.*stats.MeanIntensity);
result = cumIntensities ./cumVolumes
6 Comments
Matt J
on 2 Aug 2020
Something like this?
clear S
S(400)=struct('cumVolumes',[],'cumIntensities',[],'result',[]); %pre-allocate
for i = 1:400
[ci,cj,ck]=deal(51,51,50+i); %center coordinate
[I,J,K]= ndgrid(abs((1:100)-ci),abs((1:100)-cj),abs((i:100+i)-ck)); % Z remain 100 but changes with center
L = max(max(I,J),K)+1; %label matrix
stats = regionprops3(L,V(:,:[i:100+i]),'MeanIntensity','Volume');
S(i).cumVolumes = cumsum(stats.Volume);
S(i).cumIntensities = cumsum(stats.Volume.*stats.MeanIntensity);
S(i).result = cumIntensities ./cumVolumes
end
More Answers (1)
Amy Van Wey Lovatt
on 11 Sep 2022
Here is another option, which I'm using to calculate contrast uptake in breast images. I'm not sure which runs faster.
function PE = PeakEnhancement(S0,S1)
% S0 is the pre-contrast phase
% S1 is phase 1 or phase 2 of the contrast, this is an NxMxP matrix.
% sub is the initial percentage of uptake
sub=(S1-S0)./S0;
PE=zeros(size(sub));
% PeakEhnancement (PE) is the average of the 9 closest voxels in 3 x 3 x 3 cube.
% PE is a place holder ensuring size(PE)=size(S1) and boundaryies are all zerp.
for i=2:length(sub(:,1,1))-1
for j=2:length(sub(1,:,1))-1
for k=2:length(sub(1,1,:))-1
PE(i,j,k)=mean(sub(i-1:i+1,j-1:j+1,k-1:k+1),'all');
end
end
end
end
0 Comments
See Also
Categories
Find more on 3-D Volumetric Image Processing in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!