How to calculate mean in moving cubic volume?

1 view (last 30 days)
I have a stack of 2D images in 3D array format 100x100x500. Now I want to select a small cubic volume of 1x1x1 at center of the stack and increase this cubic volume step by step till I reach the array size, calculating mean at each stage. I know I need to use mat2cell and mean function. How can be done in corect for loop?

Accepted Answer

Matt J
Matt J on 25 Jul 2020
Edited: Matt J on 25 Jul 2020
I know I need to use mat2cell and mean function.
I don't think you do. Let's call your 3D volume, V:
[ci,cj,ck]=deal(51,51,251); %center coordinate ?
[I,J,K]=ndgrid(abs((1:100)-ci),abs((1:100)-cj),abs((1:500)-ck));
L=max(max(I,J),K)+1; %label matrix
stats = regionprops3(L,V,'MeanIntensity','Volume');
cumVolumes = cumsum(stats.Volume);
cumIntensities = cumsum(stats.Volume.*stats.MeanIntensity);
result = cumIntensities ./cumVolumes
  6 Comments
Matt J
Matt J on 2 Aug 2020
Something like this?
clear S
S(400)=struct('cumVolumes',[],'cumIntensities',[],'result',[]); %pre-allocate
for i = 1:400
[ci,cj,ck]=deal(51,51,50+i); %center coordinate
[I,J,K]= ndgrid(abs((1:100)-ci),abs((1:100)-cj),abs((i:100+i)-ck)); % Z remain 100 but changes with center
L = max(max(I,J),K)+1; %label matrix
stats = regionprops3(L,V(:,:[i:100+i]),'MeanIntensity','Volume');
S(i).cumVolumes = cumsum(stats.Volume);
S(i).cumIntensities = cumsum(stats.Volume.*stats.MeanIntensity);
S(i).result = cumIntensities ./cumVolumes
end
SojM
SojM on 2 Aug 2020
Edited: SojM on 2 Aug 2020
Thanks Matt. Yes, I was looking for somethign like that. That was very useful. Your code gave me error that "Undefined function or variable 'cumIntensities' ". I needed to define them before using as struct fields. It is working perfectly now. Following is the modified version of your code:
clear S
S(400)=struct('cumVolumes',[],'cumIntensities',[],'result',[]); %pre-allocate
for i = 1:400
[ci,cj,ck]=deal(51,51,50+i); %center coordinate
[I,J,K]= ndgrid(abs((1:100)-ci),abs((1:100)-cj),abs((i:100+i)-ck)); % Z remain 100 but changes with center
L = max(max(I,J),K)+1; %label matrix
stats = regionprops3(L,V(:,:,[i:100+i]),'MeanIntensity','Volume');
cumVolumes = cumsum(stats.Volume);
cumIntensities = cumsum(stats.Volume.*stats.MeanIntensity);
result = cumIntensities ./cumVolumes;
S(i).cumVolumes = cumVolumes;
S(i).cumIntensities = cumIntensities;
S(i).result = result;
end

Sign in to comment.

More Answers (1)

Amy Van Wey Lovatt
Amy Van Wey Lovatt on 11 Sep 2022
Here is another option, which I'm using to calculate contrast uptake in breast images. I'm not sure which runs faster.
function PE = PeakEnhancement(S0,S1)
% S0 is the pre-contrast phase
% S1 is phase 1 or phase 2 of the contrast, this is an NxMxP matrix.
% sub is the initial percentage of uptake
sub=(S1-S0)./S0;
PE=zeros(size(sub));
% PeakEhnancement (PE) is the average of the 9 closest voxels in 3 x 3 x 3 cube.
% PE is a place holder ensuring size(PE)=size(S1) and boundaryies are all zerp.
for i=2:length(sub(:,1,1))-1
for j=2:length(sub(1,:,1))-1
for k=2:length(sub(1,1,:))-1
PE(i,j,k)=mean(sub(i-1:i+1,j-1:j+1,k-1:k+1),'all');
end
end
end
end

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!